旋转叶片叶尖与机匣间的间隙是影响航空发动机、汽轮机、烟气轮机、鼓风机等重大装备安全工作性能、能量转换效率的重要参数。叶尖间隙的动态、在线测量是大型旋转机械实现健康监测、故障诊断、主动间隙控制的关键技术和制约瓶颈之一。本文通过对苛刻工业现场环境下叶尖间隙测量的特殊应用技术需求进行分析,提出了一种基于大频差双频激光的叶尖间隙测量新方法。通过设计完整的基于大频差双频激光的叶尖间隙测量
叶片振动测量系统厂家
旋转叶片叶尖与机匣间的间隙是影响航空发动机、汽轮机、烟气轮机、鼓风机等重大装备安全工作性能、能量转换效率的重要参数。叶尖间隙的动态、在线测量是大型旋转机械实现健康监测、故障诊断、主动间隙控制的关键技术和制约瓶颈之一。本文通过对苛刻工业现场环境下叶尖间隙测量的特殊应用技术需求进行分析,提出了一种基于大频差双频激光的叶尖间隙测量新方法。通过设计完整的基于大频差双频激光的叶尖间隙测量系统结构,并对系统测量模型、误差模型进行推导,通过详细的系统软、硬件模块设计和调试,本文完成了初步系统联调实验。(2)设计了适于高转速、测量的四叉型光纤束式叶尖间隙传感器,该传感器对光源波动、叶尖表面反射特性,光纤传光损耗,叶尖表面微倾斜引起的与传感器端面夹角等影响因素有补偿功能。
轴向游隙因过盈装配、带负荷运行等因素影响较小
在实践中,轴向游隙因过盈装配、带负荷运行等因素影响较小,故在安装时,一般以轴承的原始游隙为标准进行调整。
具体调整方法(见图4):在减速机不盖上盖的情况下,将轴装配安装到位,轴承两侧压盖螺栓紧固到位,然后在轴的一端轴向施加一定的压力。
该轴向力的大小可参照轴在运行中所承受的轴向力,然后使用塞尺测量间隙1与间隙2,测量完成后计算间隙1与间隙2之和,并与轴承测量的原始游隙对比,保证二者的差值在±40μm之内,若无法达到要求,则可以通过增加调整垫片调整,直到达到要求为止。

减速机不盖上盖的情况下
在减速机不盖上盖的情况下,将轴装配安装到位,轴承两侧压盖螺栓紧固到位,然后在轴的一端轴向施加一定的压力。

行星减速机齿轮间隙测试方法
行星减速机是由驱动电机和变速箱组装而成的减速传动设备。变速箱内部结构由不同尺寸的齿轮组成,达到了减速增距的效果。行星减速机的齿轮间隙也叫齿轮精度和回程间隙,其中对齿轮的要求尤为重要,行星减速机的齿轮间隙精度直接影响工作效率和使用寿命。当齿轮间隙过大时,要想办法调整齿轮间隙精度。然而,为了方便前期的调试工作,系统模拟部分的控制逻辑是由多个数字芯片搭建而成,当工作在高频信号时,信号波形有一定失真,这直接导致电容两端的电压输出值与理想值有一定差距。
减速机齿轮间隙测试方法:
齿轮根据使用情况(实际使用中的中心距)安装,其中一个齿轮不能固定转动。
方法一:用塞尺从端面塞紧齿廓间隙(可以转动另一个齿轮),塞尺刚好能塞紧的大读数就是齿侧间隙。
方法二: 用百分表测量靠近活动齿轮齿廓中段的齿头,旋转活动齿轮,读数为端侧间隙。

(作者: 来源:)