人脸检测过程中使用Adaboost算法挑选出一些代表人脸的矩形特征(弱分类器),按照加权的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。的实时特征识别理论该理论侧重于人脸实时数据的中间值处理,从而可以在识别速率和识别效能之间,达到的匹配效果。人脸图像预处理人脸图像预处理:对于人脸的图像预处理是基于人脸检测结
人脸识别功能
人脸检测过程中使用Adaboost算法挑选出一些代表人脸的矩形特征(弱分类器),按照加权的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。的实时特征识别理论该理论侧重于人脸实时数据的中间值处理,从而可以在识别速率和识别效能之间,达到的匹配效果。人脸图像预处理人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。
对于人脸图像而言,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、化、几何校正、滤波以及锐化等。人脸图像预处理人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并终服务于特征提取的过程。人脸图像特征提取人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。

3.感应线圈绕好通电后线圈会产生低频振荡。车牌号码是车辆的“身份”标识,车牌自动识别技术可以在汽车不作任何改动的情况下实现汽车“身份”的自动登记及验证,这项技术已经应用于公路收费、停车管理、交通诱导、交通、公路稽查、车辆调度、车辆检测等各种场合。当有金属进入线圈时,磁力线受影响磁场减弱被磁电感应器拾取,产生相应动作。感应线圈的感应强度与线圈的匝数和线圈的形状有很大的关系。线圈匝数太多输入感抗大,造成开路;匝数太少输入感抗小,造成短路。这两种情况会使磁电感应器的工作指示灯闪动。一般的匝数是6-8圈。

(作者: 来源:)