拉曼光谱仪常见的问题及解答
为什么待测样品的信号很弱?信噪比很差?
当进行样品测试时发现拉曼光谱信号很弱,首先要检查样品是否正确放置在显微镜下并且处于聚焦状态。你也可以将测试区域移到样品的另一个部位。同时检查仪器是否处于常规状态而不是处在共焦状态。如果激光功率小于100%,应尝试提高功率增强信号。如果光谱噪声很大,可采用增加扫描积分时间或积分次数来提高信
手持式物质识别仪价格
拉曼光谱仪常见的问题及解答
为什么待测样品的信号很弱?信噪比很差?
当进行样品测试时发现拉曼光谱信号很弱,首先要检查样品是否正确放置在显微镜下并且处于聚焦状态。你也可以将测试区域移到样品的另一个部位。同时检查仪器是否处于常规状态而不是处在共焦状态。如果激光功率小于100%,应尝试提高功率增强信号。如果光谱噪声很大,可采用增加扫描积分时间或积分次数来提高信噪比。
增加扫描积分时间可以让CCD获取更多的拉曼信号,增强整个无关噪声的特征。该法适宜于当背景和拉曼信号都低的情景。当两者都不强时,增加积分时间只会增加CCD探测器饱和的机会。
对几个特定的扫描光谱进行数据叠加可以增强随机背景噪声下的拉曼信号,增加信噪比。
适当选择扫描积分时间和积分次数可获得很大可能的曝光度增加信噪比。不过要注意一点:信噪比跟积分次数的平方根成正比,叠加四次可获得二倍信噪比的提高。
另一个与信噪比密切相关的参数是信背比。如果背景部分很高,将会湮盖拉曼信号只给出系统噪声。
拉曼光谱的优势及应用
拉曼基本原理:当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10-6~10-10,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了改变,从而不同于激发光(入射光)的频率,因此称该散射光为拉曼散射。
拉曼光谱应用:拉曼光谱技术以其信息丰富,制样简单,水的干扰小等的优点,在化学、材料、物理、高分子、生物、地质等领域有广泛的应用.
1.化学研究
a)有机化学
b)无机化学
c)催化化学
d)电化学
2. 高分子材料
a)判断化学结构
b)组分定量分析
c)晶相与无定形相的表征以及聚合物结晶过程和结晶度的监测.
d)动力学过程研究
e)高分子取向研究
f)聚合物共混物的相容性以及分子相互作用研究.
g)复合材料应力松弛和应变过程的监测.
h)聚合反应过程和聚合物固化过程监控.
3. 材料科学研究
a)薄膜结构材料拉曼研究
c)半导体材料研究
d)耐高温材料的相结构拉曼研究.
f)全碳分子的拉曼研究.
4.生物学研究
a)蛋白质二级结构、主链构象、侧链构象
b)生物膜的脂肪酸碳氢链旋转异构现象.
c)DNA分子结构以及和DNA与其他分子间的作用.
d)研究脂类和生物膜的相互作用、结构、组分等.
e)对构像变化敏感的羧基、巯基、S-S、C-S构像变化
5.中草药研究
a)中草药化学成分分析
b)中草药的无损鉴别
c)中草药的稳定性研究
6.宝石研究
a)用于宝石包裹体化学成分的定性、定量检测
b)在宝石鉴定中的应用
7.制药原辅料检测
-->