企业视频展播,请点击播放视频作者:北醒(北京)光子科技有限公司
混合固态激光雷达
激光雷达有效地结合了激光光学和大气光学,并协调集成了诸如传统雷达,光机电一体化和计算机计算等技术。 它涵盖了物理学的所有主要领域,是物理学的前沿应用技术之一。 目前,激光雷达家族庞大,分类标准很多,可以根据装备的激光器,功能用途和检测技术等标准进行分类。由于激光雷达的高分辨率和灵敏度以及
高清测距半固态激光雷达成本低
企业视频展播,请点击播放
视频作者:北醒(北京)光子科技有限公司
混合固态激光雷达
激光雷达有效地结合了激光光学和大气光学,并协调集成了诸如传统雷达,光机电一体化和计算机计算等技术。 它涵盖了物理学的所有主要领域,是物理学的前沿应用技术之一。 目前,激光雷达家族庞大,分类标准很多,可以根据装备的激光器,功能用途和检测技术等标准进行分类。由于激光雷达的高分辨率和灵敏度以及对观测背景干扰的强大抵抗力,因此可以实现全天候观测,并且可以广泛用于环境监测,地形测绘,高空探测,军事应用,民用车辆 和其他领域。激光雷达具有很强的方向性,较高的相干性和很强的单色性,并且在气象学领域发展迅速。 它可用于检测气溶胶,空气云和雾,海洋和平流层风场,温室气体,温度和湿度变化等,提供准确的实时数据,为飞行提供保护,提供气象研究,天气预报和 大气模型建模数据基础为气候变化和碳循环的研究和预测提供了指导。 例如,为了检测可吸入的颗粒物和云气溶胶浓度,可以使用反向散射激光雷达。 为了测量海洋风场和平流层风场中的风切变和风速,多普勒激光雷达可用于观测温室气体和污染。差分吸收雷达可用于测量气体的浓度和分布。
固态激光雷达
①扫描角有限,固态意味着激光雷达不能进行 360 度旋转,只能探测前方。因此要实现扫描,需在不同方向布置多个(至少前后两个)固态激光雷达。
②旁瓣问题,光栅衍射除了明纹外还会形成其他明纹,这一问题会让激光在大功率方向以外形成旁瓣,分散激光的能量。
③加工难度高,光学相控阵要求阵列单元尺寸必须不大于半个波长,一般目前激光雷达的工作波长均在 1 微米左右,故阵列单元的尺寸必须不大于 500nm。而且阵列密度越高,能量也越集中,这都提高了对加工精度的要求,需要一定的技术突破。
④接收面大、信噪比差:传统机械雷达只需要很小的接收窗口,但固态激光雷达却需要一整个接收面,因此会引入较多的环境光噪声,增加了扫描解析的难度。
激光雷达
固态激光雷达是未来的发展方向,几乎没有异议,不过,什么才是全固态激光雷达,的确还得掂量掂量。另外,只有能够量产的激光雷达才有话语权。我们来看看几家技术路线有所不同的公司怎样定义他们的产品。
理论上讲,完全没有移动部件的雷达才是固态激光雷达,光相控阵(OPA)及Flash是其典型技术路线,被认为是全固态激光雷达方案的代表。不过,近年来一些没有机械旋转机构的激光雷达也被统称为“固态激光雷达”。其性能特点包括分高辨率、有限水平FOV(前向而不是360°)等,但这些技术方案还是有一些微小的移动部件(MEMS微振镜),所以从严格意义上讲只能算“半固态”。
(作者: 来源:)