关于电源技术发展
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子方向转变。
从1955年美国罗耶(GH.Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换控制电路的开端,到现今开关电源技术成为电子信息产业飞速发展中不可缺少的电源方式。
高压线性电源供应商
关于电源技术发展
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子方向转变。
从1955年美国罗耶(GH.Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换控制电路的开端,到现今开关电源技术成为电子信息产业飞速发展中不可缺少的电源方式。
线性电源典型应用
我们现在常用的电源主要分为两类,一类是线性电源,另一类是开关电源,开关电源又可分为降压、升压、升降压。
线性电源常用的芯片就要属78系列,79系列和LM317,LM337其很大区别就在于输出正电压还是负电压。
针对线性电源都有一定的压差存在,也就是说输入与输出之间要有一定的压差,才能正常工作,如果没有达到这个压差,会造成输出电压无法达到预定输出电压值,这个压差主要是由三极管造成的,实际上这种稳压芯片的降压主要就是靠三极管承担多余的电压来实现。
线性电源有什么特点吗?
他的特点就是能从交流的输入电压获得一个可调整的直流输出电压,输入交流是一个变化的电压主要是通过一个整流滤波后得到一个直流电压然后再经过线性调整得到一个稳定的直流。
线性调整是通过整流后的电压与输出之间串联晶体管来实现的,而且这种串联晶体管工作在电压电流特性曲线的放大区域,其工作特性类似与可变电阻,调整管上面实际承受了被降低的多余的或过剩的那部分电压。这一个电压是随输入或输出的变化而变化的,这也就是为什么晶体管可以等效为是一个可变电阻。
线性电源与开关电源本质上哪些区别与相似
线性电源利用半导体器件本身的特性调整电压,一般是降压输出。由于是以器件本身消耗能量的方式得到输出,故效率较低,60%以下的转化率很常见,输出功率的线性电源体积一般比开关电源大。纹波很小。
开关电源利用电感电容充放电的特性配合场管或者三极管开关,异步传输电压电流,实现电能传输,电路结构不同可以实现升压或降压。转换效率很高,高的可达90%以上,但是还是有一定的电路损耗,转换效率现在不可实现。但是相对线性电源要节能。转换的开关频率会产生一定纹波。
(作者: 来源:)