由项目实际考察情况得到,烘干窑风机所在位置距敏感建筑仅15m,风机进风口正对敏感建筑。针对该项目上风机的噪声进行现状模拟, 利用CadnaA 噪声模拟软件对风机噪声对周围敏感点的影响进行分析,风机所在建筑与敏感建筑之间的噪声值较大,敏感建筑靠近风机进风口一侧的噪声超过70dB(A),噪声较大区域正对风机进风口,噪声值为76.3dB(A)。由于建筑物的遮挡
烘干窑风机
由项目实际考察情况得到,烘干窑风机所在位置距敏感建筑仅15m,风机进风口正对敏感建筑。针对该项目上风机的噪声进行现状模拟, 利用CadnaA 噪声模拟软件对风机噪声对周围敏感点的影响进行分析,风机所在建筑与敏感建筑之间的噪声值较大,敏感建筑靠近风机进风口一侧的噪声超过70dB(A),噪声较大区域正对风机进风口,噪声值为76.3dB(A)。由于建筑物的遮挡作用,噪声能量被削减,使得噪声无法直接达到的区域的噪声值降低。(2)根据优化后的损失和落后角模型能够较为合理地得到转子和静子的损失随着叶片负荷的变化情况。
常用的烘干窑风机噪声治理方法有加装隔声罩,对风机室墙壁进行吸隔声处理,风机室隔声门,进排气筒加消声器等从整体上对风机进行吸声、隔声、消声等综合治理措施。根据项目实地考察情况,受大风量轴流风机安装位置限制,无法对风机房墙体进行常规的吸隔声处理,考虑风机产生的空气动力性噪声主要从进风口传出,且烘干窑风机进风口正对敏感建筑,故本项目采用在进风口安装进风消声器的方式对风机进行降噪。结果表明,叶片穿孔能有效地抑制叶片非工作面叶尖泄漏和涡流的产生和脱落,从而降低了两级叶轮通过频率的声功率级和声压值。
烘干窑风机消声器设计
针对空气动力性噪声,主要应用的消声器包括阻性消声器、抗性消声器、阻抗复合型消声器[7]。在该项目应用中综合考虑现场情况,决定采用阻性消声器和消声弯头组合形成的一种结构形式,这种消声器结构简单,通过控制消声器内吸声材料的结构参数,可以有效的控制消声器的消声性能。吸声材料按照吸声原理可以分为多孔性吸声材料和共振吸声材料。该消声器中设计采用多孔性吸声材料。本试验选用力锤激励,烘干窑风机采用三向加速度传感器采集信号,采用SCADAS多功能数据采集系统和数据处理软件LMSTESTLAB对采集到的信号进行分析和处理。
本文根据已经完成的一种基于欧拉方程外加源项的模型来计算预测大小动叶可调烘干窑风机的气动性能,主要采用损失和落后角模型用来考虑叶片排和摩擦对气流的影响,并用堵塞因子修正环壁附面层堵塞影响。根据在风机安装角未发生改变时的实验性能,优化模型中的损失系数和落后角系数使得计算结果和实验计算相近。改变动叶可调风机的安装角后,本模型预测得到的该风机在安装角变化( + 10°,+ 5°,- 5°,- 10°) 的性能曲线与实验结果误差小于2%。结果表明烘干窑风机模型使用经过优化后的损失和落后角模型能准确地预测出该动叶可调轴流风机在全工况下的气动性能。86赫兹之和引起的,其次是高频气动力引起的振动和风机基频的倍频。
在实际的烘干窑风机叶轮机械中,气体的流动是一种十分复杂的、非定常的、全三维的流动。为了提高程序的计算速度,需要做出如下假设: 气体为完全气体; 流场为轴对称; 不考虑径向变化,流场沿叶片中弧线。
在轴流风机的数值计算中,本文采用Stratford 的模型对环壁边界层进行模拟。环壁边界层会沿壁面产生位移厚度,该模型假设位移厚度是沿着叶片排连续分布的,同时端壁边界层和叶尖间隙漏流发生的总压损失也包含在三维总压修正系数3D中,该模型能够计算得出比较合理的堵塞因子。研究表明,烘干窑风机的叶轮机械内的流固耦合现象与流体机械各种故障的产生有直接关系。


根据烘干窑风机优化后的参数,可以得到在设计转速下动叶和静叶的损失系数以及落后角随冲角的变化趋势,可以看出,损失系数和落后角随冲角的变化基本符合风机的流动特性。
烘干窑风机采用优化后的损失和落后角模型,对该风机的5 条特性线进行数值模拟,结果如图5 所示。从图中可以看出,修正后的一维计算结果与实验结果之间的较大误差不到2%。
( 1) 对某单级动叶可调轴流风机,本模型的数值计算结果已经与实验的计算结果进行了对比,证明了经过优化后的模型能够正确模拟得到该风机的气动性能,体现了其可靠性和准确性,因此,只要能给定准确的设计点和某一转速下的非设计工况点,经过优化后,本模型就能准确预测得到其它安装角下的气动性能。穿孔模型的烘干窑风机叶片穿孔主要包括孔径、孔位分布、孔倾角等参数。
( 2) 根据优化后的损失和落后角模型能够较为合理地得到转子和静子的损失随着叶片负荷的变化情况。导叶数目对轴流风机的性能、叶片静力结构及振动等均有一定影响。
针对某660MW 机组配套的两级动叶可调轴流一次风机,借助Fluent 进行流体数值模拟,研究导叶数目改变对风机性能的影响,并选出较优方案三。烘干窑风机利用Workbench 软件进行流固耦合计算得出对叶片静力结构及振动的影响。研究表明: 导叶数目减少方案风机性能明显优于导叶数目增加的方案,其中方案三为改型性能较佳的方案,改型后的方案其轴功率有所增大、耗电量有所增加; 方案三的叶片应力、总变形和振动与原风机基本一致,可以得出离心力对叶片静力结构和振动起决定性作用,气动力影响较小的结论; 方案三叶片的工作转速远一阶临界转速,烘干窑风机叶片的较大应力小于许用应力,均满足设计使用要求。在此基础上,利用LES软件对烘干窑风机的瞬态流场进行了计算,并引入了FW-H噪声模拟模型对风机的流场进行了计算。
(作者: 来源:)