紫菜烘干机物理模型
针对热泵型香菇烘干房,对加热室和物料室树立4200×2200×2100mm(长×宽×高)的物理模型,模型中将香菇堆积的物料盘设定为模块化的多空介质,为了得出烘干房内较优的气流组织方式,本次模仿对烘干室设计了四种不同的送风方式,种送风方式为侧送风上回有回风通道;第二种送风方式为紫菜烘干机侧送风上回无回风通道;第三种送风方式为下送风上回有回风通
紫菜烘干机
紫菜烘干机物理模型
针对热泵型香菇烘干房,对加热室和物料室树立4200×2200×2100mm(长×宽×高)的物理模型,模型中将香菇堆积的物料盘设定为模块化的多空介质,为了得出烘干房内较优的气流组织方式,本次模仿对烘干室设计了四种不同的送风方式,种送风方式为侧送风上回有回风通道;第二种送风方式为紫菜烘干机侧送风上回无回风通道;第三种送风方式为下送风上回有回风通道;针对新疆青皮核桃去皮后烘干所需求的时刻太长、工作量太大的现实问题,设计了一种核桃主动烘干控制体系。第四种送风方式为下送风上回无回风通道。
紫菜烘干机工作过程中烘干房内的气流状态为湍流状态,考虑到紫菜烘干机烘房内的空气活动属于不行压缩的低速湍流,并且契合Boussinesq假设,烘干房内热空气与四周内壁的接触形成了约束流,而规范k-模型对于有壁面束缚的约束活动预测较为静确,因此本次紫菜烘干机模仿中选用规范 k-模型。模仿所使用软件是由英国帝国理工学院所研制的Phoenics软件,Phoenics是世界上套商用核算流体与核算传热学软件,其通风模仿结果具有较强可靠性与静确性。热泵烘干技能的使用,标志着农副产品脱水烘干迈向了新方向和新的范畴、对传统农副产品烘干方式和烘干设备具有强有力的冲击和挑战。
紫菜烘干机运用phoenics软件对热泵型香菇烘干房在不同送风方法下的气流组织进行了模仿,通过对比分析选出醉优的送风方法。主要内容如下:
运用phoenics软件对热泵型香菇烘干房在侧送风上回有回风通道、侧送风上回无回风通道、紫菜烘干机下送风上回有回风通道、下送风上回无回风通道四种送风方法下的气流组织进行了模仿分析。
归纳对比了四种不同送风方法下烘干房内的流场分布,对比了香菇物料主要堆积区域不同高度截面风速平均值和风速不均匀性系数。发现侧送风上回有回风通道送风方法下,香菇物料主要堆积区域内有较大风速,但在高度1m以上时风速均匀性欠佳,别的其三种送风方法风速分布相对均匀,但全体风速较小。因此在归纳考虑平均风速和风速不均匀系数的前提下,紫菜烘干机采用在侧送风上回有回风通道基础上合作轴流风机加大烘干房上部风速的送风方法。新鲜果蔬水分含量大,在采收、运送、存储和销售等过程中简略出现枯蔫、腐烂等现象,从而导致产质量量下降,直接影响经济收益。
针对紫菜烘干机尺寸在1 cm内的水果烘干,查阅相关材料,确定本设计烘干系统选用4台220 V、400 W的风机和4台220 V、2200 W的压缩机,按照均布式的布局装置在烘干箱的同一侧面板上;为了加速排湿的速度,在烘干箱的顶部开设两个风扇。
紫菜烘干机控制系统的硬件设计
果蔬的烘干过程中,加工时间和烘干温度是整个烘干控制系统的重要参数[5,6],其运转的安稳性和安全性是衡量控制系统好坏的重要目标。因此,本系统将环绕以上2个性能目标,从5个模块构建整个控制系统的架构,分别为控制模块、采集模块、执行模块、上位机模块和安全模块。在烘干进程中,香菇内部的水分不断的蒸腾出来,一起紫菜烘干机也对湿空气进行排出,而水分蒸腾出来的速率略大于烘干房排湿的速率,因此中间烘干进程中干燥介质的含水量呈现出相对安稳但缓慢上升的状况。
紫菜烘干机主控制器挑选PLC,具有运转安稳性、装置方便简略、丰厚的I/O接口模块以及编程简洁的优势。因此,依据系统所需传感器个数和被控制设备的数量换算成对应输入信号和输出信号的点数,紫菜烘干机醉终挑选台达DVPEH00R3系列PLC作为控制器,其主要功用包括:控制过程中的数据缓存和运算、输出设备的控制(例如中间继电器、交流触摸器等)。相关人员需求对引起该现象的主要原因进行核实,在针对物料堵塞引起机械毛病的状况,需立刻停止设备工作状况,并按照相关的操作要求和规范对机械内部存在的物料进行清除。
(作者: 来源:)