建立了一种复杂的数学模型,用于预测套管式换热器内流体的流动及传热特性的数学模型,包括计算流体力学模型和计算传热学模型。其中,计算传热学模型中的瑞流扩散系数是利用温度方差和温度方差耗散率来求解,而不是利用通常采用的数假设值或实验测定值来求解。分析换热器的物理模型,对模型进行适当的简化,分别对换热器的管侧和壳侧的温度场进行分析,研宄传热管束内部的传热过程,同时分
管壳式冷凝器
建立了一种复杂的数学模型,用于预测套管式换热器内流体的流动及传热特性的数学模型,包括计算流体力学模型和计算传热学模型。其中,计算传热学模型中的瑞流扩散系数是利用温度方差和温度方差耗散率来求解,而不是利用通常采用的数假设值或实验测定值来求解。分析换热器的物理模型,对模型进行适当的简化,分别对换热器的管侧和壳侧的温度场进行分析,研宄传热管束内部的传热过程,同时分析换热器壳侧不同位置处的换热情况。对换热器的出口平均温度进行分析,分析出口平均温度与设计温度之间的误差,评价换热器的换热性能。管壳式换热器内部换热面泄漏对换热器流动传热性能的影响规律研究。对换热器壳侧的速度场进行研究,分析换热器的结构对自然循环的影响,并提出相关的意见对换热器进行优化分析。
基于进出口动态参数的管壳式换热器内部故障诊断预测研究。
(1)基于进出口动态参数,建立管壳式换热器结垢厚度和泄漏量的理论评价模型,给出评价模型的求解方式;
(2)基于分公司某大队管壳式换热器运行过程中的进出口动态参数,分析换热器内部运行状况,利用管壳式换热器结垢和泄漏的理论预测模型进吝分析,给出预测模型应用误差。 油田原稳站油一油管壳式换热器内部结构复杂,结构尺寸大,采用数值模拟研究时,对计算机配置要求较高,采用CFD前处理软件很难对现场实际模型进行网格划分,为便于研究分析,本课题在研究的过程中,对现场实际换热器进行模型简化处理。目前,原稳站管壳式换热器运行效果多人为经验判断,不能及时准确地对运行效果、存在问题进行诊断。
本文主要研究管壁污垢对管壳式换热器流动传热性能的影响规律。考虑管壁污垢传热的影响,将污垢当量到管壳式换热器的换热管壁,建立管壳式换热器的三维流动传热模型。管壳式冷凝器主要研究内容包括以下三部分:管壁污垢对管壳式换热器流动传热性能的影响规律研宄。在此基础上,建立了管壳式换热器内两相流(油一砂)数学模型一混合模型,包括质量守恒方程、混合模型的动量方程、第二相的体积分数方程、相对(滑流)速度和漂移速度方程,采用有限体积法离散模型,使用稳态、隐式、分离式求解器,基于交错网格的SIMPLE算法解决速度压力藕合问题,研究中砂对换热器壳程流场的影响,并分析结垢厚度对管壳式换热器管程、壳程出口温度和传热系数等参数的影响。
换热器内砂沉积对结垢位置的影响
换热器内管壁结垢主要受其液体介质含砂浓度的影响,对管壳式换热器壳程流场进行了液一固两相流数值模拟,根据模拟结果分析,确定换热器的主要砂沉积位置。壳程为沙子和的两相流动,沙子的粒径根据现场采集的数据大约在0.2mm-O.}mm之间。本次研究选用沙子粒径为0.2mm和0.4tn m,沙子的体积分数选为10%,壳程进口流速为0.7m/s,对管壳式换热器的壳程流场进行数值模拟。换热器体积巨大,换热管直径与换热器长度的比值小,利用CFD前处理软件对其进行网格处理困难,网格数量太多,对计算机配置的要求非常高。砂子体积分布的位置选取结果为沿换热器管长方向的四个截面,其中,z=-0.7n:为管壳式换热器壳程出I:l处的一个截而,z二一0.39m与z=0.016m为靠近管壳式换热器折流板的一个截面,z=0.7m为管壳式换热器壳程入I-I处的一个截面。
管壳式换热器运行过程中的速度矢量分布,在换热器运行过程中,换热器壳程入口段的速度矢量值在0.4m/s;川页着折流板走向,换热器壳程内砂的速度矢量值在0.6m/s至2m/s之间变化,在折流板上方的砂速度;在折流板逆向换热器壳程内介质流动方向的背部,固体砂的速度矢量值,大约为0. I m/s。这是由于折流板的阻挡作用,降低了砂的速度。当砂粒径较大更容易在速度降低区域形成砂沉积,卫比砂粒径0.2m m时更为明显。但是,管壳式换热器结垢对其内部流动换热性能影响的研究相对较少。当砂粒径为0.4mm,换热器运行稳定时,管壳式换热器壳程入u处的含砂率较高,大约在so%左右,壳程整体砂体积变化范围在5%-20%之间,由于本次分析的砂粒径较大,为0.4mm,故在壳程折流板根部有少量砂沉积,但沉积区占整个壳程的体积分数5%。
(作者: 来源:)