搅拌功率的基本计算方法:
由流体力学的纳维尔-斯托克斯方程,并将其表示成无量纲形式,可得到无量纲关系式(11-14)。Np=P/ρN³dj5=f(Re,Fr)式中Np——功率准数Fr——弗鲁德数,Fr=N²dj/g;P——搅拌功率,W。式(11-14)中,雷诺数反映了流体惯性力与粘滞力之比,而弗鲁德数反映了流体惯性力与重力之比。实验
油罐搅拌器生产厂家
搅拌功率的基本计算方法:
由流体力学的纳维尔-斯托克斯方程,并将其表示成无量纲形式,可得到无量纲关系式(11-14)。Np=P/ρN³dj5=f(Re,Fr)式中Np——功率准数Fr——弗鲁德数,Fr=N²dj/g;P——搅拌功率,W。式(11-14)中,雷诺数反映了流体惯性力与粘滞力之比,而弗鲁德数反映了流体惯性力与重力之比。实验表明,除了在Re﹥300的过渡流状态时,Fr数对搅拌功率都没有影响。即使在Re﹥300的过渡流状态,Fr数对大部分的搅拌桨叶影响也不大。因此在工程上都直接把功率因数表示成雷诺数的函数,而不考虑弗鲁德数的影响。所以减少抗爆剂中胺类化合物的含量,使其在环保范围内发挥的效能,是该类抗爆剂能否推广使用的一个难点。由于在雷诺数中仅包含了搅拌器的转速、桨叶直径、流体的密度和黏度,因此对于以上提及的其他众多因素必须在实验中予以设定,然后测出功率准数与雷诺数的关系。由此可以看到,从实验得到的所有功率准数与雷诺数的关系曲线或方程都只能在一定的条件范围内才能使用。明显的是对不同的桨型,功率准数与雷诺数的关系曲线是不同的,它们的Np-Re关系曲线也会不同。
抗爆剂
是关系到国计民生的重要的燃料之一。随着我国国民经济的飞速发
展和汽车保有量的迅速增加,燃料的需求量越来越大。而辛烷值又是
车用的重要的质量指标,它综合反映一个炼油工业水平和车辆
设计水平,所以从二十世纪初,人们就一直开始寻找提高辛烷值的有效途
径,经近一个世纪的努力,技术日趋成熟。
工艺法虽是提高辛烷值的主要手段,但存在着投资大,改变馏
程等问题,往往不易实现生产组合和缺乏适度的灵活性。国内外大量
实践证明:采用抗爆剂是提高车用辛烷值有效的手段。
抗爆剂根据其组成的不同可分为有灰类(如含有金属的环戊二
烯三湠基锰、四铅等)和无灰类
(如叔丁基醚等纯有机化合物)。
料到的效应,主要表现为:
(1)润滑性能下降,设备的磨损加大。1991年,瑞典在使用硫含量为0.00%的柴油时,发现燃料泵产生的烧
结和磨损甚至比普通柴油的磨损还要严重。日本也对不同硫含量的柴油作了台架试验,结果也确认了柴油润
滑性能下降的问题。其主要原因是在脱硫的同时把存在于油品中具有润滑性能的天然极性化合物也脱除了,
从而导致润滑性能下降,设备的磨损加大。
(2)柴油安定性变差,油品色相恶化。当柴油的硫含量降到0.05%以下时,过氧化物的增加会加速胶状物和沉
淀物的生成,影响设备的正常运转,并导致排气恶化。其主要原因是由于原本存在于柴油中的天然化组分
在脱硫时也被脱除掉了。同时随着柴油中硫含量的降低,油品的颜色变深,给人以恶感。

(作者: 来源:)