沸石分子筛的应用干燥及净化领域的应用(1)脱水。利用低硅铝比的沸石分子筛(如 A型,X型等)的极性亲水性,可以进行空气的干燥。另外近年来将乙醇掺入中替代部分受到广泛重视,作为燃料的乙醇要求其中的水含量 0.8%,而由于乙醇和水的共沸,使得通过精馏只能得到 95%的乙醇,对于含水量较低的乙醇脱水,沸石分子筛吸附脱水是的选择。此方法中应用的沸石分子筛是A 或X型,而
氧气分子筛厂家
沸石分子筛的应用
干燥及净化领域的应用
(1)脱水。利用低硅铝比的沸石分子筛(如 A型,X型等)的极性亲水性,可以进行空气的干燥。另外近年来将乙醇掺入中替代部分受到广泛重视,作为燃料的乙醇要求其中的水含量 0.8%,而由于乙醇和水的共沸,使得通过精馏只能得到 95%的乙醇,对于含水量较低的乙醇脱水,沸石分子筛吸附脱水是的选择。
此方法中应用的沸石分子筛是A 或X型,而KA 型,这一方面利用了 A型沸石分子筛的极性,另一方面由于KA沸石分子筛的孔道直径约 0.3nm,水分子可自由进入,而乙醇分子直径大于 0.3nm 不能进入沸石分子筛的孔道。此种沸石分子筛脱水工艺是工业上生产燃料乙醇的工艺。
(2)净化空气中的污染物。随着工业的迅速发展,H2S、SO2、NOX以及甲醛的排放量日益增多,造成的污染给人们的生活和环境带来了严重的危害。

自然界中存在一种天然硅铝酸盐,它们具有筛分分子、吸附、离子交换和催化作用。这种天然物质称为沸石,人工合成的沸石也称为分子筛。分子筛的化学组成通式为:(M)2/nO· Al2O3·xSiO2·pH2O,M代表金属离子(人工合成时通常为Na),n代表金属离子价数, x代表SiO2的摩尔数,也称为硅铝比,p代表水的摩尔数。分子筛骨架的基本结构是 SiO4和AlO4四面体,通过共有的氧原子结合而形成三维网状结构的结晶。这种结合形式,构成了具有分子级、孔径均匀的空洞及孔道。由于结构不同,形式不同,“笼”形的空间孔洞分为α、β、γ、六方柱、八面沸石等 “笼”的结构。

N2/ O2的分离。在变压吸附(PSA)法中,沸石分子筛是利用N2/O2两气体在其表面平衡吸附的差异,选择性地吸附 N2。因为 N2的极化率较大,从而 N2与沸石分子筛中的阳离子及其极性表面作用强于 O2。LiA 型沸石分子筛具有更高的 N2/O2选择比及 N2吸附容量,但热稳定性较差。于是,Li+、碱土金属混合阳离子交换后的 A型沸石分子筛具有较高的 N2/O2选择分离系数、N2吸附容量和较高的热稳定性。另外低硅铝比的 X型沸石分子筛引起了人们的关注。人们对其进行了各种离子交换,其 N2/O2分离选择性较高且热稳定性较好。

在某些空分装置里,对再生气体的加热是采用蒸气加热的。在再生时,由于加热器的损坏,使蒸汽泄漏到再生气体中,因而,再生气体含有大量水份。从图1和图2中可以看出,分子筛对水的吸附力很强,而且有效吸附力与温度的依赖关系不大。即使在200℃时,吸附力还很显著,而且有较高的保持能力。在实际生产中,再生温度一般控制在170~220℃。所以,再生加热器泄漏后,再生过程反而变成了分子筛吸附水的过程。再生后的分子筛中仍吸附有大量的水份。当分子筛重新进行吸附操作时,其活性必然下降,有可能让水等物质进入分馏塔,并造成危害。
(作者: 来源:)