叶轮、蜗壳和集热器是离心风机的三个主要部件。结果表明,采用数值计算方法可以简单、准确地得到给定子午线分布的叶轮子午线轮廓。下面详细介绍了各构件及主要结构参数的研究进展。离心风机叶轮的主要结构参数有:叶轮出口直径、叶轮出口宽度、叶轮进口直径、防爆离心风机叶轮进口宽度、叶片数、叶片进出口安装角度。对于风机的整体性能,除叶轮结构参数外,叶轮叶型直接影响风机叶片
防爆离心风机

叶轮、蜗壳和集热器是离心风机的三个主要部件。结果表明,采用数值计算方法可以简单、准确地得到给定子午线分布的叶轮子午线轮廓。下面详细介绍了各构件及主要结构参数的研究进展。离心风机叶轮的主要结构参数有:叶轮出口直径、叶轮出口宽度、叶轮进口直径、防爆离心风机叶轮进口宽度、叶片数、叶片进出口安装角度。对于风机的整体性能,除叶轮结构参数外,叶轮叶型直接影响风机叶片通道内的流动特性,对风机的总压和效率等性能参数也有很大的影响。目前离心风机叶片型线主要有单圆弧叶片、双圆弧拼接叶片、S型叶片和等减速流型叶片。此外,学者们还研究了三维叶片技术和扭叶片。根据叶片出口安装角度的不同,叶片的安装方式有三种:前向、径向和后向。许多学者对上述叶片型线的性能进行了大量的研究,并深入分析了不同叶片结构的优缺点。对单圆弧叶片和恒减速叶片离心风机的内部流动特性进行了实验研究。结果表明,等减速流型的叶轮不仅使叶轮通道内的压力梯度变化更为规律,而且有效地削弱了防爆离心风机叶轮出口的射流尾流结构,从而有效地降低了离心风机的流量损失、扩散损失和出口。与单圆弧叶片相比,有效地提高了混合损失的效率。


在防爆离心风机的改进设计中,根据叶轮流道截面逐渐变化的原理,建立了风机叶片型面成形的数学模型。对设计的流场进行了计算。计算结果表明,新设计的风机性能较好。但仍有一些问题需要进一步解决和改进。
1。在防爆离心风机叶片型线设计中,选择了叶片安装角随叶轮半径线性变化的规律进行设计,但风机叶片型线的形成方法有多种形式。本文选择了一种较为典型的线性成形方法,并取得了较好的效果。因此,可以对离心风机叶片型线成形方法进行进一步的研究。
2。结果表明,防爆离心风机基于LSSVM和LHS的大型离心风机性能预测方法能够充分利用现有的风机数据信息,、准确地预测风机性能。通过观察风机设计工况下叶片通道的流线图,可以看出设计风机长短叶片吸力面上仍存在一些分离现象。通过查阅文献,发现一些流量控制方法可以改善叶片吸力面分离现象。因此,如果合理地将有效的流量控制方法应用于设计风机,可以使风机的吸入面分离。性能进一步提高。
3。在数值计算方面,在计算条件允许的情况下,可以使用更密集的网格和近壁模型。在湍流模型方面,还值得进一步研究,以便在离心风机的各种工况下得到更准确的结果。

除了数值模拟和实验测量外,传统的多翼离心风机的性能改进主要集中在多翼离心风机的结构优化设计上,取得了较好的效果。A风机入口挡板开启80%时,风机电流为146A,B风机入口挡板开启80%时,风机电流为145。王斗提出了双圆弧叶片的设计方法,解决了防爆离心风机单圆弧叶片普遍存在的进口负荷大、空分严重的问题。毛泉友采用分段设计法,叶片沿叶片高度方向设计成梯形和矩形截面。通过数值研究发现,分段设计的风机效率比原型风机提高了3.69%,防爆离心风机风量增加了16.3%。研究发现,后缘自然切割的叶片在翼型表面具有流线型设计,前盘区具有较低的循环流量,可以获得较大的空气量和总压。适用于柜式空调多翼离心风机的叶片设计。防爆离心风机叶片在不同圆弧曲率角和进口安装角组合下的风机性能。分析表明,双圆弧叶片的气动性能优于单圆弧叶片。通过对刀片的穿孔,吴先军等。使部分气流从高压面流向叶片的低压面,使防爆离心风机涡流分离点移到叶片下方。这样可以降低叶片出口段分离区的涡流强度和尺度,降低噪声。然而,这种方法需要更高的处理精度。研究发现,在倾斜叶片出口角不变的情况下,与直叶片相比,风体积略有减小,但叶片通道内的流动分离度有所减小。
(作者: 来源:)