高压阀门采用楔形阀瓣
◆从力学上分析,因为锥形阀是悬臂梁,在高压高速流体的冲击下,在高频振动下容易产生振动和疲劳断裂。楔形阀的阀芯为一斜面切割圆柱阀芯而形成,该种形状从力学角度分析,相当于一个简支梁,由于其阀瓣下端紧贴阀座,这样阀瓣的振动很小或很难发生振动,因而与锥形阀相比,楔形阀在操作过程种的稳定性更好。由于其结构简单、工作可靠,能保证阀门在超高压下
高压阀门报价
高压阀门采用楔形阀瓣
◆从力学上分析,因为锥形阀是悬臂梁,在高压高速流体的冲击下,在高频振动下容易产生振动和疲劳断裂。楔形阀的阀芯为一斜面切割圆柱阀芯而形成,该种形状从力学角度分析,相当于一个简支梁,由于其阀瓣下端紧贴阀座,这样阀瓣的振动很小或很难发生振动,因而与锥形阀相比,楔形阀在操作过程种的稳定性更好。由于其结构简单、工作可靠,能保证阀门在超高压下工作时的稳定性。
高压阀门阀座及阀出口设计成文丘里喷嘴形,可以减少气蚀和闪蒸。在阀前或阀后装限流孔,能吸收一部分压降,减少阀前发后压降,可以减弱气蚀。如果有闪蒸现象,则不易采用底近侧出流向。采用新的结构是提高超高压卸压阀水压阀寿命的有效途径。但是,其压力越高,结构应越简单。在国外,用于承受气蚀的部件材料、阀瓣和阀座等多用不锈钢和工具钢,阀座基体则用铬铝钢和不锈钢。为了延长超高压阀门的使用寿命,还要考虑其工况环境。
毛坯铸造工艺的改进
我厂井口闸阀采用砂模铸钢毛坯,阀体加工过程中,在与阀座配合的内螺纹处经常出现气孔、缩松等铸造缺陷,经对阀体剖面的宏观分析发现,在图1所示的热节区,有程度不同的缩松现象,为解决上述问题,我们对铸造工艺进行多次改进试验。
1)改进浇冒口系统。将设置在阀体两侧圆柱面的浇冒口系统改为如图1所示在阀体底部设置的横直浇口系统;
2)改砂模铸造为熔模铸造;
3)改侧浇法为顶浇法,且使中法兰向下。由于熔模铸造比砂模铸造具有更好的透气性、更快、更均匀的冷却条件,所以组织更为致密。由于钢液从顶部浇入,又是从冒口直接浇入,浇冒口的位置靠近热节区。为铸件创造了极为有利的顺序凝固条件,热节区得到及时的补缩,所以经工艺改进后生产的铸件组织致密,消除了缩松、缩孔等铸造缺陷,产品合格率达到99%以上。高压阀门表面强化处理为了提高零件的性能,除了改变材质以外,更多的是采用表面强化处理方法。
允许误差控制在0.02mm~0.04mm之间。此外,阀体在加工过程中需考虑一次压紧、定位的准确性和可靠性。如图2所示,应将靠车床主轴线的重直面视为参照基准,利用弯板垂直面上的楔式槽与楔形块的滑动将阀体一端法兰面找正压紧,分别进行两面加工。此外,阀体在加工过程中,需在车床工装上靠回转盘旋转180o完成两端阀体内腔的加工。回转精度是靠分布在回转法兰两个对称分布的锥形定位销孔的重复定位来保证的。TD法浴用材料以含40‰~80‰的Ni,10‰~30‰的Cr合金或Fe-Ni-Cr合金制件,其耐蚀性强。转位误差为0.01mm~0.02mm。
(作者: 来源:)