数据库脱敏技术
通常在大数据平台中,数据以结构化的格式存储,每个表有诸多行组成,每行数据有诸多列组成。根据列的数据属性,数据列通常可以分为以下几种类型:可确切定位某个人的列,称为可识别列,如身份号,地址以及姓名等。单列并不能定位个人,但是多列信息可用来潜在的识别某个人,这些列被称为半识别列,如邮编号,生日及性别等。美国的一份研究称,仅使用邮编号,生日和性别信息
市级数据资产分类分级价格
数据库脱敏技术
通常在大数据平台中,数据以结构化的格式存储,每个表有诸多行组成,每行数据有诸多列组成。根据列的数据属性,数据列通常可以分为以下几种类型:可确切定位某个人的列,称为可识别列,如身份号,地址以及姓名等。单列并不能定位个人,但是多列信息可用来潜在的识别某个人,这些列被称为半识别列,如邮编号,生日及性别等。美国的一份研究称,仅使用邮编号,生日和性别信息即可识别87%的美国人。包含用户敏感信息的列,如交易数额,疾病以及收入等。其他不包含用户敏感信息的列。
为什么要进行数据脱敏?
我们要进行改造的数据是涉及到用户或者企业数据的安全,进行数据脱敏其实就是对这些数据进行加密,防止泄露。对于脱敏的程度,一般来说只要处理到无法推断原有的信息,不会造成信息泄露即可,如果修改过多,容易导致丢失数据原有特性。因此,在实际操作中,需要根据实际场景来选择适当的脱敏规则。改姓名,身份,地址,手机,电话号码等几个客户相关字段。
动态数据库脱敏实现机制
用户的数据请求被代理实时在线拦截并经脱敏后返回,此过程对于用户及应用程序完全透明。这种机制的脱敏判断是在数据容器外实现,因而能够适用于非关系型数据库,如大数据环境。脱敏代理部署在数据容器的出口处以网关方式运行,检测并处理所有用户与服务器间的数据请求及响应。它的好处是,无需对数据存储方式及应用程序代码做出任何更改。代理实现数据脱敏的具体方法是查询语句或响应语句替换。代理能自动识别目标为敏感数据的查询语句,并将语句改写为不包含敏感字段,或对敏感字段进行变换处理的查询语句。查询结果返回代理时,会被重新计算、修改并包装为与原请求一致的格式交付用户,从而完成一次敏感信息的查询过程,
(作者: 来源:)