为了满足越来越复杂样品的高l效、分离和分析的需求,硅胶色谱填料的制备技术在不断进步和。从早形貌不规则的无定形硅胶发展到球型硅胶;从粒径分布宽的多分散球型硅胶发展到粒径高度均一的单分散球型硅胶;从全多孔球型硅胶发展到表面多孔核壳结构硅胶;从金属杂质含量高的A型硅胶发展到超纯的B型硅胶;从不耐碱的纯硅胶基质发展到耐碱的有机杂化硅胶;从相对单一的键合相到更加多样化的键合相硅胶色谱
超纯硅胶
为了满足越来越复杂样品的高
l效、分离和分析的需求,硅胶色谱填料的制备技术在不断进步和。从早形貌不规则的无定形硅胶发展到球型硅胶;从粒径分布宽的多分散球型硅胶发展到粒径高度均一的单分散球型硅胶;从全多孔球型硅胶发展到表面多孔核壳结构硅胶;从金属杂质含量高的A型硅胶发展到超纯的B型硅胶;从不耐碱的纯硅胶基质发展到耐碱的有机杂化硅胶;从相对单一的键合相到更加多样化的键合相硅胶色谱填料。每一次硅胶材料制备技术的进步都促进了硅胶色谱分离分析性能的进一步提升,并拓展其应用范围。
依据van Deemeter 方程,随着颗粒度的不断降低,涡流扩散减小,分子传质阻力减小,相应的理论塔板高度( HETP) 也下降,得到的柱效也更高,由于压力与填料粒径平方成反比,因此随着粒径减小压力会急剧增加。从液相色谱出现至今,硅胶粒径从100 μm左右降低到3-10 μm,再减小到亚2μm,其柱效由每米数十塔板数提高到3.2x105塔板数每米。液相色谱也从工业用常压制备色谱发展到分析检测用高压HPLC再到目前超高压UPLC。工业分离纯化的粒径在10微米以上,而常规HPLC填料粒径在3-5微米,UPLC填料颗粒小于2μm。因此伴随着越来越精细的硅胶色谱填料的使用,HPLC分离分析性能也越来越好。亚2μm的硅胶填料的使用使得HPLC的分辨率,检测速度及柱效达到前
l所未有的水平,同时也引起了色谱分析仪器的变革。
手性色谱填料硅胶色谱填料中特殊而又引人注目的是手性色谱填料。手性色谱可以用于分离光学对映异构体分子。手性分离是色谱分离领域很具有挑战的,因为色谱分离往往是依据不同分子物理和化学性质差异如分子大小、表面电荷、极性等的不同建立不同色谱分离模式。一般来说物理和化学性能越相似的组分,其色谱分离难度越大,而光学对映异构体分子其化学和物理性质基本相同,只是结构上不可重叠且呈镜像对称。描述光学对映异构体很简单而又生动的模型是人的左右手,因此手性分离很具有挑战性。
(作者: 来源:)