根据现场场地布置,并结合参考了化工设备标准反应釜尺寸,选取其内径Di1=Φ1800mm,按充装系数0.85 计算, 实际容积为V=6/0.85=7.05m3。热负荷必须根据反应釜的传热计算得出,在设备尺寸确定后,换热面积F已固定。按GB/T25198-2010《压力容器封头》选取椭圆形封头,查其容积V=0.827m3 , 形状系数K=1 。则筒体高度为:h=(7.
夹套反应釜
根据现场场地布置,并结合参考了化工设备标准反应釜尺寸,选取其内径Di1=Φ1800mm,按充装系数0.85 计算, 实际容积为V=6/0.85=7.05m3。热负荷必须根据反应釜的传热计算得出,在设备尺寸确定后,换热面积F已固定。按GB/T25198-2010《压力容器封头》选取椭圆形封头,查其容积V=0.827m3 , 形状系数K=1 。则筒体高度为:h=(7.05-0.827x2)/ (πx0.92)=2.12m。夹套选取Di2=Φ2000mm。通过用户提供的工况,在参照GB150-1998《钢制压力容器》确定釜体内设计压力位工作压力的1.1 倍,即设计压力Pc1 为0.2x1.1=0.22MPa 设计温度依据夹套选取了t1=164℃,夹套依据用户使用过程中的蒸汽的温度查阅在相应温度下的饱和蒸汽压为0.6 MPa,故我选取了夹套设计压力为Pc2=0.6MPa,设计温度为t2=164℃,焊接接头系数Φ取0.85。
由于用户单位提供的介质具有腐蚀性,通过与用户沟通介质的腐蚀性及对材质的焊接性的把握, 选取了釜体结构采用00Cr17Ni14Mo2,厚度负偏差C2=0.8mm,腐蚀余量C1=0mm。因此,深度分析此课题,提出行之有效的控制和维护措施有着重要的意义。通过查询GB150-1998《钢制压力容器》中材料的设计温度下许用应力与其试验温度许用应力通过插值法可以算00Cr17Ni14Mo2 材质试验温度许用应力[σ]=118MPa,设计温度许用应力 [σ]t=114.48MPa,试验温度下屈服点 σs=177 MPa,夹套采用Q235-B 材质,厚度负偏差C2 =0.8mm,腐蚀余量C1=1mm。其试验温度许用应力 [σ]=113MPa,设计温度许用应力[σ]t=110.76 MPa,试验温度下屈服点σs =235MPa。
由于顶盖所受的内压(0.7 MPa)远大于其外压(0.1 MPa), 所以下面的分析只针对其承受内压的工作状态进行分析。刮料板为尼龙制成,具有一定的弹性,在清除釜壁粘附物料的同时,不损伤釜壁。顶盖的理论应力分析顶盖为标准椭圆型封头, 椭圆型封头的长轴a=500 mm, 短轴b=250 mm, 封头的名义厚度按照前面设计值Sn =16 mm, 按照无力矩理论给出顶盖的经向和环向应力分布曲线可以看出, 在距中心大约425 mm处,环向应力等于0, 该处是环向应力由拉应力改变为压应力的交界处, 而顶盖开人孔位置正经此处。以上应力状况是针对不开孔的封头的。对此处曲率变化较大部位进行开孔, 必使应力复杂化。为此对按常规设计得出的顶盖的壁厚提出了质疑。
单位体积加热介质的所含热量大1耐的O.S M P a ( 压力) 蒸汽的热烩约为8 0 0 0U ( 1 9 0 0 k e a l ) :1耐温度160 ℃ 导热油的热烩约为251 o o U( 6 0 0 0 0 k e a l )。夹套反应釜加料口安装有球铰式压盖和加料漏斗,压紧力可根据釜内压力无级调节,以确保加料口的密封。即在加热介质进口阀门关闭后, 油加热反应釜仍保留较大的热量。当油温高于反应物温度时, 仍能传导热量。对于既需要加热又需冷却的制胶反应釜来说, 布置冷却面时应考虑此因素。对于温度需要急剧变化的装置来说可考虑增设将热油及时导出(如冷油置换) 的系统。.加热介质温度高油温一般为160 ℃ 以上。从安全出发, 对反应釜及管路系统要注意密封, 采用耐油、耐压、耐高温的材料, 防止热油泄漏。导热油加热反应釜的工艺设计通常, 反应釜的工艺设计包括反应釜的容量、热负荷的确定以及传热面的计算, 可以通过物料平衡、热量平衡与传热计算得出。这里主要谈的是与“ 油加热” 相关的一些注意点。
针对传统化工反应釜容器内部的物料加热温度恒定控制不准确问题,通过将温度计设置在罐体容器的内壁底部,与导线进行连接,以在温度显示器上进行更加直观、准确的显示,并将温度显示器在夹套侧壁上进行固定,来更加方便的进行温度监控与调节管理,确保其化工反应中温度升高与变化适宜。(3)根据分析设计标准,对有限元结果进行强度评定,结果表明按常规设计出的顶盖厚度不满足强度要求,所以进行了内部贴补强圈的补强设计。此外,对传统化工反应釜作业中,其容器反应腔内空间较大,但容器口较小,导致对反应釜的清洗难度较高,容易发生残余杂质堆积,影响反应效果的问题,通过将包含进水管以及喷淋盘、加压泵等的清洗装置在容器罐体上盖设置安装,同时在进水管中进行加压泵设置,对喷淋盘侧壁与底面进行喷嘴设置,以在加压泵的加压引水作用下,由喷淋盘表面喷嘴喷出,以对容器壁进行清洗,确保其清洗效果,减少对反应釜反应作业的不利影响。总之,对反应釜结构的优化改进,能够有效满足其结构在反应作业中的有关需求,进而确保其反应作业的质量和效果,确保其生产应用安全性,具有十分积极的作用和意义。
(作者: 来源:)