在电源给电容器充电过程中的任一时刻,若电容器所带电荷量为q,则电容器两板间的电压U=qC。充电电流必然流经内阻r,设内阻r两端的电压为Ur,根据欧姆定律可知E电动势=U+Ur。所以不难想象,图6.12中斜直线上方的三角形面积,即为电源电动势做功QE电动势过程中被消耗在内阻r上而转变为焦耳热的能量。电容器爆1破的后果,可能会危及其他电气设备,甚至引起电容器室(柜)发生火灾。
脉冲形成网络人工线参数
在电源给电容器充电过程中的任一时刻,若电容器所带电荷量为q,则电容器两板间的电压U=qC。充电电流必然流经内阻r,设内阻r两端的电压为Ur,根据欧姆定律可知E电动势=U+Ur。所以不难想象,图6.12中斜直线上方的三角形面积,即为电源电动势做功QE电动势过程中被消耗在内阻r上而转变为焦耳热的能量。电容器爆1破的后果,可能会危及其他电气设备,甚至引起电容器室(柜)发生火灾。
问题解决了!在用电源给电容器充电的过程中,只能有一半的能量被电容器储存,必然有另一半能量消耗在回路的电阻之上。如果电容器储存的能量很多,则消耗在回路电阻上的能量也就同样的多。如果这部分能量全部消耗在电源的内阻上,则对电源十分不利,这也是在充电回路中另外增加限流电阻的原因。采用该补偿方式时,电容器和被补偿设备电感感应电动机共用一套控制设备,同时投入或退出运行,所以管理分散,维护不便,而且电容器不能充分发挥效率,利用率不高。
至此,可能还有一个疑问:如果对电容器充电的能量利用率仅有50%,给使用电容器作为电源的电动汽车充电不是会浪费很多电能吗?当所用的信号脚在1大容量负载下同时开关时,用来保持提供给器件恒定的直流电压和电流。要知道上面讨论的是用有固定电动势的电源给电容器充电的情况,如果给大容量电容器充电,应该使用可变电动势的电源,这样可以使充电的能量利用率大大提高。
高频领域中的电容器
一般情况下,我们接触的多是中、低频的电容器设计应用,正如我们从初中开始学习电容器时也是赫兹数不是很高一样。但是,往往当进入到了高频率的领域时,我们面对的就不仅仅是肉眼所能看到的电容器了,更多的是那些我们根本无法直接察觉到的电容效应。在这里我把从图书馆看到的和自己想到的关于高频领域中的电容器应用知识一一写下来,以求对此有个比较系统一点的认识。对换万用表笔测两次,以漏电大(电阻值小)的一次为准,黑表笔所接一脚为负极,另一脚为正极。
实际上,电容不仅仅只存在于电容器内部,只要两个不同电位的表面相互靠近时就会产生电场,即存在电容效应,其作用就相当于一个电容器。这种无意间所形成的电容器给它一个名字就是寄生电容,它会造成电路中电流的中断。由于这种电容往往与电路并联,则频率较高时,它将起到旁路信号的作用,即降低了信号的功率,从这个意义上来讲,可以说是无形中构成了一个LPF。除颤器工作时的电功率在50kW到150kW之间,这个功率是相当大的,用电池直接供电无法达到,也大大超过了一般家庭的用电功率,而除颤器还必须便于携带,那它使用了什么样的供电装置呢。
在高频PCB板级EMC设计时,电容通常被选择作为抑制元件,因为在产品构成之后它们是容易安装型的——将它们在一个接收1器中或一个PCB上的两个终端简单地焊接起来,通过这种方式提供一个低阻路径去转移噪声电流。例如在产品外围电缆的信号线和回路线之间可以放置一个电容,这样做是为了转移高频噪声电流并且防止它出现在外围电缆上,否则它的辐射效率将相当大。一个经验法则是:对于转移噪声电流。而不是把题目当做一个数学题,只做数学计算,而忽略了物理和工程的意义。
用万用表电阻档粗略鉴别5000PF以上容量电容的好坏
用万用表电阻档可大致鉴别5000PF以上电容器的好坏(5000PF以下者只能判断电容器内部是否被击穿)。检查时把电阻档量程放在量程高1档值,两表笔分别与电容器两端接触,这时指针的摆动一下然后复原,反向连接,摆动的幅度比更大,而后又复原。这样的电容器是好的。绝缘电阻理想的电容器,在其上加有直流电压时,应没有电流流过电容器,而实际上存在有微小的漏电流。电容器的容量越大,测量时电表指针摆动越大,指 针复原的时间也较长,我们可以根据电表指针摆动的大小来比较两个电容器容量的大小。
(作者: 来源:)