焊接时通常采用聚焦方式会聚激光,一般选用63~254mm(2.5”~10”)焦距的透镜。聚焦光斑大小与焦距成正比,焦距越短,光斑越小。通过技术团队研发和核心技术产业化,研发出具有自主知识产权的金属3D打印设备、激光熔覆设备以及功能性部件,突破国外核心技术的垄断,以持续研发及技术装备的升级应用,带动增材制造产业化发展,促进传统制造业向现代化智能装备制造业的转型。但焦距长短也影响焦深,即焦
切割机改造方案
焊接时通常采用聚焦方式会聚激光,一般选用63~254mm(2.5”~10”)焦距的透镜。聚焦光斑大小与焦距成正比,焦距越短,光斑越小。通过技术团队研发和核心技术产业化,研发出具有自主知识产权的金属3D打印设备、激光熔覆设备以及功能性部件,突破国外核心技术的垄断,以持续研发及技术装备的升级应用,带动增材制造产业化发展,促进传统制造业向现代化智能装备制造业的转型。但焦距长短也影响焦深,即焦深随着焦距同步增加,所以短焦距可提高功率密度,但因焦深小,必须保持透镜与工件的间距,且熔深也不大。由于受焊接过程中产生的飞溅物和激光模式的影响,实际焊接使用的焦深多为焦距126mm(5”)。当接缝较大或需要通过加大光斑尺寸来增加焊缝时,可选择254mm(10”)焦距的透镜,在此情况下,为了达到深熔小孔效应,需要更高的激光输出功率(功率密度)。
当激光功率超过2kW时,特别是对于10.6μm的CO2激光束,由于采用特殊光学材料构成光学系统,为了避免聚焦透镜遭光学破坏的危险,经常选用反射聚焦方法,一般采用抛光铜镜作反射镜。由于能有效冷却,它常被推荐用于高功率激光束聚焦
移动式激光熔覆设备主要有前端执行机构和后端设备组成,前端执行机构包括多轴工业机器人、移动承载车体、电气控制系统、送粉机构、激光熔覆头、熔覆喷嘴组成;后端设备包括高功率光纤激光器、水冷机、动力电源箱、保护气体组成。该技术的不足之处在于工件表面的粗糙度受到一定程度的破坏,一般需要后续机械加工才能恢复。使用同一机器人,不仅可以用于激光熔覆,还可以用于机器人自动打磨,对熔覆完成的零件进行打磨抛光。还可配置模块化的变位机转台,通过总线控制与机器人协同工作。
除此之外,针对大型设备的修复现场,尤其是无法进行拆卸和运输的工件,可移动式激光熔覆设备可提供高质量增材修复工艺的选择。激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。该设备应用不仅解决了大型成套设备连续可靠运行所必须解决的抢修难题,避免了拆卸、运输、异地修复、安装的过程,节省了工人劳动强度和修复时间,为企业减少停机时间和避免更换新件和运输的费用。一般综合效益是传统方法的几十倍甚至几百倍
传感器激光焊接机:
传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。激光淬火是加热、自激冷却,不需要炉膛保温和冷却液淬火,是一种无污染绿色环保热处理工艺,可以很容易实行对大型模具表面进行均匀淬火。传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、保护等等极其之泛的领域。
传感器是否有较高的技术附加值体现在所包含的技术含量和加工工艺的技术是否高新。有部分传感器由于其应用环境的状况需金属封装,一般采用激光焊接机焊接密封,对焊接质量要求高,而且焊接过程中要求变形小,不能对内部元件和微电路有损坏。
传感器激光焊接机可用于几乎所有的金属焊接。与传统的焊接技术相比,传感器激光焊接机具有,深刻的宽度比,无需后续加工,热影响区小等特点。
光纤激光打标机打标效果不均匀的原因:
采用偏焦标刻一定范围的内容
因为每一个聚焦镜都有对应的焦深范围,而采用偏离焦点的办法会容易导致大范围标刻图案时,边缘处在焦深临界点或者超出焦深范围,这样就比较容易造成效果的不均匀性。因此,偏焦标刻的方法须考虑激光能量的问题
激光输出光斑被遮挡,即激光光束经过振镜及场镜后光斑有缺,不够圆
热透镜现象
机台水平未调好,即激光振镜头或场镜镜头与加工台面不平行
材料的原因,如材料表面的膜层厚度不一致或物理化学性质变化
(作者: 来源:)