根据 耙式真空烘干器MVR技术的特点,将该技术与不同的工艺结合起来形成新的处理流程,该流程可以根据实际生产需要提供相宜的传热温差。一般在蒸发过程中要求的传热温差和压差大小都与所处理料液的热敏性相关,高热敏性物料一般只适宜使用小温差、多梯度分阶段进行蒸发作业。通过转子的旋转将气体从低压端吸入,并将其输送到高压端,气体在转子内并不会被压缩。因此,耙式真空烘干器MVR蒸
耙式真空烘干器
根据 耙式真空烘干器MVR技术的特点,将该技术与不同的工艺结合起来形成新的处理流程,该流程可以根据实际生产需要提供相宜的传热温差。一般在蒸发过程中要求的传热温差和压差大小都与所处理料液的热敏性相关,高热敏性物料一般只适宜使用小温差、多梯度分阶段进行蒸发作业。通过转子的旋转将气体从低压端吸入,并将其输送到高压端,气体在转子内并不会被压缩。因此,耙式真空烘干器MVR蒸发系统的工艺流程也可以设计成单效蒸发和多效蒸发。对于 MVR 技术的工业应用.
目前成功应用的领域有海水淡化、污水处理、中药浓缩、制盐等诸多领域,且国内外高校研究者们在 MVR 技术工业应用的研究上也取得很多成果。早在1983 年,云南省乔后盐矿就对采用电力驱动的机械蒸汽再压缩制盐工艺可行性进行了初步试探,但当时国内技术的限制及在压缩机制造上的不足,使得该试想并未得到实际应用。而两种减压阀均可耐高温,波纹管减压阀可以适用于低压、高压蒸汽管路等不同压力范围管道,而先导活塞式减压阀一般较适用于高压蒸汽管路。之后一直到本世纪初,国内在MVR技术的研究上并未取得较大成果,直至近些年我国在压缩机等MVR 系统主要设备制造上的突破及将MVR技术列为重点推广节能技术开始,MVR技术才开始有了重大突破,从此掀起了一股 MVR 研究热潮。
关于耙式干燥机中空热轴驱动电机功率主要包括驱动电机用以克服转轴与填料函的摩擦及搅动物料消耗的功,其中转轴克服与填料函摩擦所消耗的功有公式可以参考,但是搅拌耙叶所消耗的功率尚无计算公式可循,本次耙式干燥机设备设计中,以设备公司提供传热面积为7.6m2 干燥机为依据,再结合耙式干燥机耙叶的面积、转轴直径、转轴转速、干燥物料性质等综合考虑后,选定耙式真空烘干器电机的功率为2k W。目前可供使用的蒸汽减压阀主要有两种,波纹管式减压阀和先导活塞式。适合作为 MVR 系统中的压缩机主要有两类,一类是离心式压缩机,还有一类是回转活塞式压缩机。
考虑到气体出耙式真空烘干器丝网后的整流,丝网与外壁隔开 50mm 距离。分离器下面本应设集液板,但考虑本系统中为方便液体从丝网上直接滴入干燥室内,故不设集液板。为了降低整个设备的高度和设备的强度,采用圆弧封头。耙式真空烘干器的回转活塞式压缩机又分为罗茨压缩机和螺杆压缩机这两大类。考虑到气体流速均匀,出气口放在封头的正中间。工管路在实际生产中的作用是用来输送各种类别流体流质(包括气体、液体等),使其在生产中能够按照工艺要求流动,以便完成各个生产过程。
各种不同类型化工管路,在设计安装以及实际生产中都有各自不同的特点,只有掌握其特点才能合理使用并确保生产的安全。耙式真空烘干器管路设计主要包括管路系统的组成、管路的压力和温度、管径、管路阻力、管型选择等。简化后的单级耙式真空烘干器MVR脱盐系统模型(此系统只包含一根9m长度,0。考虑到本套系统为实验系统,且管路设计比较紧凑等原因,只对其组成、管径等进行设计,全套管路(包括三通管、异径管、弯头接管等)统一使用钢制管件。
耙式真空烘干器换热器是化工生产中重要的化工设备之一,换热器的种类、型号很多,特点不一,需要根据实际生产工艺要求选择合适的换热器。管壳式换热器是目前工业生产中应用广泛的换热设备,其单位体积的传热面积比较大且传热效果好,此外,结构简单,制造材料范围广,操作弹性大。因此本系统中选择使用管壳式换热器。机械蒸汽再压缩热泵蒸馏浓缩工艺的特点及其适用工况,以稀释后的N,N-水溶液进行浓缩过程研究,提出了三级MVR蒸馏浓缩工艺。换热器选择的流速应尽可能避免流体处于层流状态,不同流体流经换热器时换热器传热系数也不同,耙式真空烘干器的管壳式换热器不同流体总传热系数 KH的经验值。换热器实际传热面积需预留 20%余量,假设换热器中冷水 25℃进入换热后 50℃流出,根据前文计算蒸汽流量 33.3kg/h,假设有 10%蒸汽从疏水阀泄漏出来,则有 3.3kg/h 蒸汽需要利用换热器的冷量冷凝,其余热水假设全部由饱和时的 113.2℃冷凝成 45℃热水,提供冷量的冷水则从 25℃升温到 40℃。
(作者: 来源:)