电流/电荷控制型压电陶瓷执行器驱动电源源于Comstock和Newcomb与Flinn的研究工作,由于能降低叠堆型压电陶瓷执行器的滞后现象,实现线性驱动,得到深入研究。具有更高频率精度,更优异频率稳定性,可靠性更高的压电陶瓷频率元器件。但是电流/电荷控制型压电陶瓷执行器驱动电源存在零点漂移,低频特性差,限制了其应用电流/电荷控制型压电陶瓷执行器驱动电源源于C
压电陶瓷生产工厂
电流
/电荷控制型压电陶瓷执行器驱动电源源于Comstock和Newcomb与Flinn的研究工作,由于能降低叠堆型压电陶瓷执行器的滞后现象,实现线性驱动,得到深入研究。具有更高频率精度,更优异频率稳定性,可靠性更高的压电陶瓷频率元器件。但是电流/电荷控制型压电陶瓷执行器驱动电源存在零点漂移,低频特性差,限制了其应用
电流/电荷控制型压电陶瓷执行器驱动电源源于Comstock和Newcomb与Flinn的研究工作,由于能降低叠堆型压电陶瓷执行器的滞后现象,实现线性驱动,得到深入研究。但是电流/电荷控制型压电陶瓷执行器驱动电源存在零点漂移,低频特性差,限制了其应用[6
在各种精密陶瓷中,以电子陶瓷的应用样,市场也大,由於其优异的特性,且具有一些特殊的性能,如压电性、焦电性等,使它在电子工业上占有一个非常重要的地位,其特性分述如下:
3.
特殊的物理性质
(a).
电性方面:部份的电子陶瓷具有压电性(piezoelectricity),焦电性(pyroelectricity),铁电性(ferroelectricity)等特殊性质,所谓压电性是在材料上加压後,产生电流的效应,反之亦然;焦电性则是加温後产生电流,铁电性会在移去电场後,存在自发的极化量,这些特殊的物性使得电子陶瓷得以制作许多特殊用途的元件。不含或少含有毒、有害元素的片式压电陶瓷频率元器件的应用会受到关注。
(b).
光学方面:
现今的陶瓷不但可以透光,而且具有许多意想不到的特性,如光的倍频效应,可以将入射光的频率加倍,也可利用III-V族化合物制造雷射。
压电传感器只能应用于动态测量:
由于外力作用在压电元件上产生的电荷只有在无泄漏的情况下才能保存,即需要测量回路具有无限大的输入阻抗,这实际上是不可能的,因此压电式传感器不能用于静态测量。
压电元件在交变力的作用下,电荷可以不断补充,可以供给测量回路以一定的电流,故只适用于动态测量(一般必须高于100Hz,但在50kHz以上时,灵敏度下降)。
-->