鳞斗干渣机输送链采用双套筒模锻链和一组鳞斗组成,其中高套筒模锻链抗拉强度:h80×200为(2×)380~410kN,h100×300为(2×)480~530kN,根据不同性能等级抗拉强度有差别。由于套筒模锻炼采用精密锻造和加工工艺,且单链条为宽幅双链板结构,保证双链条传动的同步性,无偏差;年拉伸率(主要是磨损)约0.1~0.5%。折叠优缺点分析套筒模锻为精密链传动,不打滑,出力大,磨损小,同
干渣机厂家
鳞斗干渣机输送链采用双套筒模锻链和一组鳞斗组成,其中高套筒模锻链抗拉强度:h80×200为(2×)380~410kN,h100×300为(2×)480~530kN,根据不同性能等级抗拉强度有差别。由于套筒模锻炼采用精密锻造和加工工艺,且单链条为宽幅双链板结构,保证双链条传动的同步性,无偏差;年拉伸率(主要是磨损)约0.1~0.5%。折叠优缺点分析套筒模锻为精密链传动,不打滑,出力大,磨损小,同步性高,寿命高,不足是制造工艺复杂且要求较高;鳞斗制造工艺也比较复杂,但作为输送换热载体,冷却效果好,更适合大倾角和细灰输送。拖动链条采用高强度圆环链,表面硬度不HV700,使用寿命不30000小时。鳞斗干渣机输送承载也采用简支轴支撑,比悬臂轴抵抗冲击能力强;干渣机抬头改向为压轮与链条作用,受力合理,可实现更大角度输送。自清扫输送结构,简化了系统,减少了故障点,降低了费用,且设有同步清扫器,尾部无积灰;不足之处是底板有细灰残留,目前仍需要改进。
3.6.1 尾部箱体两侧张紧油缸的平行度 ≤2 mm,张紧油缸与张紧辊筒、张紧链轮轴线的垂直度 ≤2 mm。
3.7 输送链托辊、托轮、压轮
3.7.1 托辊与箱体侧板的垂直度误差为 1 mm,任意相邻两托辊的平行度误差为 1 mm,托辊表面的母线应处于同一平面,任意相邻
三组托辊表面母线的相对高差 ≤2 mm。
3.7.2 托辊的摩擦阻力矩 ≤2 N.m
3.7.3 托轮与箱体侧板的垂直度误差为 1mm,任意相邻两托轮的平行度误差为 1 mm。
3.7.4 托轮的摩擦阻力矩 ≤1 N.m。
3.7.5 压轮与箱体侧板的垂直度误差为 1 mm,任意相邻两压轮的平行度误差为 1 mm。
3.7.6 压轮的摩擦阻力矩 ≤1 N.m。
a) 将钢带加载至系统额定工况负载,将张紧压力由低向高逐渐调整,测定钢带机的启动张紧压力,填入下表2.3-3。
表2.3-3 钢带启动压力检验表 启动张紧压力(MPa)空载额定负载(t)备 注 操作员: 检验员: 检验日期: 年 月 日(3) 空负荷运转48小时试验 (20Hz)
张紧钢带启动钢带输渣机,记录(仍按表2.3-2的内容)和采集钢带启动和稳定运行时电动机的功率、电流、电压、转速、带速、台车位移、温升等。观察网带、钢带的运行情况,以及钢带位置的变化。监视过渡段、头部、尾部、侧向限位轮的运行情况。
(4)调速性能试验(5~40Hz)
钢带设置四个常用频点:5Hz,20Hz,30Hz,40Hz,在每个频率段运行2小时。
记录(仍按表2.3-2的内容)和采集电动机的功率,电流电压,转速,带速,台车位移,温升(包括各个轴承座的温度和环境温度的变化),同时观察以上参数在频率改变时的变化情况。
(5) 张紧与位移试验
钢带48小时空载试运开始前,记录尾部滑车的初始位置及此时钢带张紧压力。试运开始后,每间隔10h 测量1次钢带伸长量,并记录相应钢带张紧压力。在完成48小时试运行后,测量尾部滑车的位移量,结果记录到表2.3-4。
(作者: 来源:)