无论是生物制药大规模分离纯化还是药l物分析、食品检测、环境监测、石油化工产量控制、生命科学研究等都离不开色谱技术。色谱填料是色谱系统的心脏,因此被誉为色谱“芯”。改革开发以来,色谱领域的基础研究取得突飞猛进的进步,发表文章数量位居世界第l一,但无论是用于工业分离纯化还是实验室分析检测的色谱填料和色谱柱基本依赖进口,色谱产业长期处于缺“芯”状况。而且几乎所有重大色
UPLC
无论是生物制药大规模分离纯化还是药
l物分析、食品检测、环境监测、石油化工产量控制、生命科学研究等都离不开色谱技术。色谱填料是色谱系统的心脏,因此被誉为色谱“芯”。改革开发以来,色谱领域的基础研究取得突飞猛进的进步,发表文章数量位居世界第
l一,但无论是用于工业分离纯化还是实验室分析检测的色谱填料和色谱柱基本依赖进口,色谱产业长期处于缺“芯”状况。而且几乎所有重大色谱理论的创建,新的色谱分离分析模式的建立,新型色谱填料技术的发明,及关键产业化技术突破都与14亿人口无关。这对于拥有
l多色谱领域专职研究人员,色谱文章多年位居世界第
l一的来说是比较尴尬的。纳微科技将给大家讲解纳微科技是如何去破
l解这一局面。

从纯硅胶到超纯硅胶再到有机杂化硅胶
早期硅胶以硅酸盐为硅源制得,金属杂质含量较高,属于A型硅胶。金属杂质导致其硅羟基酸性较强,使得极性或碱性化合物色谱峰拖尾及回收率很差。用有机试剂(TEOS,四乙氧基)为原料可以有效控制金属离子含量,制备超纯B型硅胶,即降低了硅醇基的活性,也消除了化合物在色谱柱上与金属离子产生螯合,避免碱性化合物拖尾。目前用于HPLC硅胶色谱填料基本上都是超纯的B型硅胶。
合物材料借助键合、聚合和交联等方法以共价或吸附的形式与硅胶表面羟基相结合, 而实现对硅胶改性的方法。硅胶基质聚合物包覆和聚合物涂敷型填料不仅扩大了使用的pH范围, 同时表面的聚合物有效地覆盖了硅胶表面的硅羟基, 既避免了强极性和碱性物质的非特异吸附, 也改善了填料的分离效能, 很大限度地降低了残存的硅羟基的效应, 即使是在中性条件下分析碱性物质, 仍能保持峰型完
l美,使其即有硅胶填料高机械强度的特性,又有聚合物填料耐酸碱性优点。无论是引入有机杂化基团或通过聚合物包覆改造硅胶基质,都可以提高硅胶的pH 耐受性,并屏蔽或减少表面硅羟基以降低碱性化合物的拖尾。为了满足速度更快、分辨率更高、分离选择性更好液相色谱分离和分析技术的需求,以硅胶为基质的色谱填料的将向单分散,核-壳型、杂化硅胶、窄分布孔结构及超大孔结构硅胶等新型材料方向发展。
反相色谱是比较常用的色谱分离模式,占到了全部分析色谱的70%左右。通常只需优化流动相组成就可实现对大多数有机化合物和多肽的分离分析。反相硅胶色谱填料的制备方法比较简单,主要是通过硅胶表面羟基与带不同烷
l基链或试剂键合。其中C4、C8和C18 硅胶键合相是使用比较广泛的反相色谱填料。反相色谱填料的研究是朝着柱效高、重现性好、分析速度快、制备方法简单、硅羟基掩蔽完全、选择性好、pH使用范围宽、寿命长等目标进行。反相硅胶色谱填料发展主要是两方面:一方面是制备越来越丰富的键合相以满足HPLC 越来越广的分离选择性的要求;另外一方面是解决反相色谱填料表面残留硅羟基带来拖尾、pH适用范围受限、及使用寿命短等问题。反相色谱填料制备的过程中, 由于位阻原因,硅胶表面的硅羟基不可能全部与试剂反应,残留的硅羟基在反相分离过程中会与极性分子形成非特异性吸附,导致
l极性化合物尤其是碱性化合物色谱峰变宽,甚至严重拖尾,柱效下降等。另外残留硅羟基还会影响硅胶色谱填料的耐酸碱性,并限制其pH使用范围,缩短填料使用寿命。因此开发有效封尾(封端)技术以减少或消除残留硅羟基从而改善反相色谱填料性能是色谱填料研究的重要方向之一。另外在封端过程中引进带正电荷的功能基团也可以屏蔽硅羟基对碱性化合物非特异吸附。
(作者: 来源:)