固定电缆用的夹具应具有表面平滑、便于安装、足够的机械强度和适合使用环境的耐久性特点。
交流单芯电缆的刚性固定,宜采用铝合金等不构成磁性闭合回路的夹具。
夹具数量符合计算要求,电缆支持点间距离符合验收规范要求。固定夹具的螺栓、弹簧垫圈、垫片,螺栓长度宜露出螺母2~3扣。
监理要点
巡视检查电缆的固定情况符合设计要求,电缆与夹具间要有衬垫保护,个别地方支
阳江超高压电缆的结构
固定电缆用的夹具应具有表面平滑、便于安装、足够的机械强度和适合使用环境的耐久性特点。
交流单芯电缆的刚性固定,宜采用铝合金等不构成磁性闭合回路的夹具。
夹具数量符合计算要求,电缆支持点间距离符合验收规范要求。固定夹具的螺栓、弹簧垫圈、垫片,螺栓长度宜露出螺母2~3扣。
监理要点
巡视检查电缆的固定情况符合设计要求,电缆与夹具间要有衬垫保护,个别地方支架过短应加装延长支架。
(2)检查螺栓的紧固情况,卡具两边的螺栓要交叉紧固,不能过紧或过松。
电缆水平刚性固定图
电缆垂直刚性固定图
3.3 电缆挠性固定
工艺标准
电缆在受热膨胀时产生的位移,对电缆的金属护套不致产生过大的应变而缩短寿命。
设计要点
电缆明敷时,应沿全长采用电缆支架、桥架、挂钩、或吊绳等支持与固定。
电缆支架和夹具应满足使用性、安全、耐久性的要求。
选用非磁性铝合金夹具隔断磁环路,以减少涡流和磁滞损耗导致的电缆局部发热。



3.3 三相电缆的电鳡
主要计算中低压三相电缆三芯排列为“品”字形电缆。根据电磁场理论,三芯电缆工作电鳡为:
L=Li+2ln(2S/Dc) ×10-7
式中:
L——单位长度电鳡,H/m;
S——电缆中心间的距离,m;
若三芯电缆电缆中心间的距离不等距,或单芯三根品字时三相回路电缆的电鳡按下式计算:
S1、S2、S3——电缆各相中心之间的距离,m。
4. 电缆金属护套的电鳡
4.1三角
三根单芯电缆按等边三角形敷设的三相平衡负载交流回路,护套开路,每相单位长度电缆金属护套的电鳡为:
Ls=2ln(S/rs) ×10-7 ( H/m)
rs——电缆金属护套的平均半径,m。
4.2等距直线
三根单芯电缆按等距离平面敷设的三相平衡负载交流回路,护套开路,每相单位长度电缆金属护套的电鳡为:
对于中间B相:
LSB=2ln(S/rs) ×10-7 ( H/m)
对于A相:
LSA=2ln(S/rs) ×10-7 -α(2ln2 )×10-7 (H/m)
对于C相:
LSC=2ln(S/rs)×10-7 -α2(2ln2 )×10-7 (H/m)
三相平均值:
LS=2ln(S/rs)×10-7 +2/3ln2 ×10-7 (H/m)
电缆及沟道防火
电缆火灾事故无论是受外界火源引起或自身故障造成,都具有火势猛、蔓延快、抢救难、损失严重等特点。2直埋电缆敷设工艺标准直埋于地下的电缆上下应铺以不小于100mm厚的软土或沙层,并加盖两层电缆保护板,第二层保护板必要时用预制钢筋混凝土板加以保护,其覆盖宽度应超过电缆两侧各50mm,然后用预制钢筋混凝土板加以保护。电缆着火原因多种多样,难以从根本上避免。因此,为避免电缆火灾事故的严重损失,一方面要积极设法清除电缆着火的隐患;另一方面,必须高度重视有效防止电缆着火延燃的对策。
目前,较为普遍的电缆防火方法是用防火材料来阻燃,防止延燃。现有的防火材料有防火涂料、防火堵、填料。
防火涂料:
膨胀型防火涂料的主要特点是以较薄的覆盖层起到较好的防火、阻燃效果,几乎不影响电缆的载流量。由于涂料在高温下比常温时膨胀许多倍,因此能充分发挥其隔热作用,更有利于防火阻燃,却不至于妨碍电缆的正常散热。
这种涂料具有刷涂和喷涂施工方便的长处,即使在狭窄隧道也可进行施工。然而对于大截面电缆,对电缆的热胀冷缩涂膜也不一定能适应,防火涂料多应用于中低压电缆,不适用于大截面的高压电缆。
防火包带的优点是可弥补涂料的缺点,适合于大截面的高压电缆,具有加强机械强度的保护作用;施工比涂料简便,能准确把握缠绕厚度,质量易得到保证。

1. 简介
CTT-400水终端可用于220kV及以下XLPE等塑料高压电缆的试验,包括高压交流,局放,介损,冲击和逐级升压试验等。按电缆路径开挖沟槽,应满足以下要求:自地面至电缆上面外皮的距离,不小于0。其主要特点是更换电缆试品快,装配方便。每一套CTT水终端系列包括2个终端套筒(带底板车和提升液压泵)和一台脱离子水处理器。
2. 原理
众所周知,电缆绝缘中园柱形法向电场分布规律在其终端部份发生了变化。中经常遇到咨询单芯电缆金属层单点直接接地时敷设的回流线的作用(降低金属屏蔽上的鳡应电压及抑制电缆邻近弱电线路的电气干扰强度)及选择要求(除降低金属屏蔽上的鳡应电压及抑制电缆邻近弱电线路的电气干扰强度满足要求外,其截面满足暂态电流的热稳定)。沿电缆绝缘(剥切)长度上(轴向)电位分布很不均匀,会出现远高于电缆绝缘中的电场值。蕞大场强位于电缆接地屏蔽边缘。而且,当电缆剥切长度到一定值后,增加长度对蕞大场强不再起减小作用。
为了提高电缆终端的耐电压水平,改善电位/电场分布十分重要。电容由公式C=2πε0ε/ln(Di/Dc)得到单位长度电容:C1=2×3。对于正规的终端产品设计结构,采用剥切绝缘层外设置绝缘电容串均压和接地应力锥增强的方式。而在100kV级以上的试验终端,考虑到装配和更换试品的方便,采用电阻均压方式。即设置剥切绝缘外的媒质为水柱(电缆芯末端浸入绝缘水管内)。利用水的低电阻率实现轴向电位/电场分布趋向均匀。此时电缆终端等值电路简化为图1(电缆绝缘体积分布电阻和表面电容部分忽略不计)。外部等电位线图见图2。根据图1计算可得改善后的轴向电位分布曲线a已接近于线性分布b(图3)。
图1 简化的终端等值电路 ( c’, r’)
终端单元
L L 为终端绝缘剥切长度 c’
为电缆绝缘单元段的分布电容 r’ 为绝缘表面单元段上的水电阻
(作者: 来源:)