影响毫米波传播的主要气体是氧分子和水蒸气,这些气体的谐振将会对毫米波频率产生选择性吸收与散射。由氧分子谐振引起的吸收峰出现在60和120GHz附近,而由水蒸气谐振引起的吸收峰出现在22和183GHz附近,在整个毫米波频段有四个传播衰减相对较小的“大气窗口”,它们的中心频率在35GHz、45GHz、94GHz、140GHz、220GHz附近,这些“窗口”对应的带宽分别是16GHz
软件系统安装
影响毫米波传播的主要气体是氧分子和水蒸气,这些气体的谐振将会对毫米波频率产生选择性吸收与散射。由氧分子谐振引起的吸收峰出现在60和120GHz附近,而由水蒸气谐振引起的吸收峰出现在22和183GHz附近,在整个毫米波频段有四个传播衰减相对较小的“大气窗口”,它们的中心频率在35GHz、45GHz、94GHz、140GHz、220GHz附近,这些“窗口”对应的带宽分别是16GHz、23GHz、26GHz、70GHz。在这些特殊频段附近,毫米波传播受到的衰减较小,比较适用于点对点通信。
毫米波同轴连接器从广义上讲,它是一段同轴线,因此同轴线传输的基本理论在这里也是适用的。但是它毕竟又不详同轴线那样简单,由于结构上的需要,引进了绝缘子,内外导体直径出现台阶。它不可能是一个均匀的同轴线,使电场传输特性发生了改变,另外由于制造上的原因,存在不可避免的误差,使连接器的精度受到影响。这一系列问题是连接器理论需要解决的内容。有些可以通过理论分析与计算求的比较合理的设计参数,但是有些问题因数十分复杂,难以进行理论计算,就是计算也不一定准确,只有通过对典型结构的试验,找出他们的规律性,用以指导连接器的理论设计。
对于连接器而言,什么样的体积与覆盖面积(footprint)是有效的;可允许的尺寸公差是多少;端子的插入与拨出力是多少;连接器的性(插拔配合的频率)如何这些因素都是在选择电连接器时要考虑的。如:对于印刷电路板而言,确定电路板的公差是很重要的,它是卡缘连接器(cardedgeconnection)的临界值,以及达到临界的可行性。对于小功率电路,镀层与底层材料必须指明与信号标准与环境等级相一致。
毫米波在通信、雷达、遥感和射电天文等领域有大量的应用。要想成功地设计并研制出性能优良的毫米波系统,必须了解毫米波在不同气象条件下的大气传播特性。影响毫米波传播特性的因素主要有:构成大气成分的分子吸收(氧气、水蒸气等)、降水(包括雨、雾、雪、雹、云等)、大气中的悬浮物(尘埃、烟雾等)、以及环境(包括植被、地面、障碍物等),这些因素的共同作用,会使毫米波信号受到衰减、散射、改变极化和传播路径,进而在毫米波系统中引进新的噪声,这诸多因素将对毫米波系统的工作造成极大影响,因此我们必须详细研究毫米波的传播特性。
(作者: 来源:)