对废水NH4磷酸二氢钾的脱氨氮处理方法
对废水NH4+磷酸二氢钾的脱氨氮处理方法是在含氨氮废水中加入适量的Mg2+和PO43-化学物质,以促进NH4++反应生成难溶性盐酸磷酸氨镁MgNH4PO46H2O结晶,较终回收废水中剩余的氮磷。一般而言,该方法适用于处理高浓度氨氮废水,氮素去除率达90%以上。另外,在确定废水中不含有毒物质时,磷酸氨镁沉淀脱落可用作缓释复合肥。实践证明,化学
废水氨氮回收方案
对废水NH4磷酸二氢钾的脱氨氮处理方法
对废水NH4+磷酸二氢钾的脱氨氮处理方法是在含氨氮废水中加入适量的Mg2+和PO43-化学物质,以促进NH4++反应生成难溶性盐酸磷酸氨镁MgNH4PO46H2O结晶,较终回收废水中剩余的氮磷。一般而言,该方法适用于处理高浓度氨氮废水,氮素去除率达90%以上。另外,在确定废水中不含有毒物质时,磷酸氨镁沉淀脱落可用作缓释复合肥。实践证明,化学沉淀工艺设计简单,反应过程稳定,受外界干扰小,抗冲击能力强,可保证高脱氮效果。实际操作中,应注意控制投药量,提前确定沉淀剂的使用方向,反应后废水中氨氮的残留浓度较高,并采取相应的处理措施。
废水的处理方式、分类和资源化利用是污水处理水质的关键
废水的处理方式、分类和资源化利用是污水处理水质的关键。垃圾填埋场渗滤液、焚烧场渗滤液、中转站渗滤液以及各类垃圾资源化项目,如厨垃圾、厨余垃圾资源化工程产生的沼液等。不同类型的渗滤液水质差别较大,具体如下:
(1)垃圾种类、填埋方式、填埋规模、填埋时间、天气变化等因素对渗滤液的影响。研究表明,近几年来,填埋调节池CODcr水质CODcr水质CODcr水质CODcr在3000~12000mg/L之间,NH3-N在1000~3500mg/L范围内,C/N水平偏低。资源工程沼渣的填埋场也会影响其渗滤液的水质。
(2)焚烧场和中转站的渗滤液均新鲜,水质稳定,污染物负荷大,CODcr可达到4000~60000mg/L,NH3-N在800~2000mg/L之间,C/N含量较高。同时混合大量冲洗水,不进行厌氧发酵,水质指标焚烧场渗滤液。

集成氨氮废水处理技术的研发
集成氨氮废水处理技术的研发,分别针对高浓度氨氮废水和中低浓度氨氮废水开发出了相应的处理工艺,并应用于多个项目。
运用的技术和丰富的工程经验,结合国内外相关领域的工艺设备,针对工业企业日益突出的环境污染问题,提出系统化、深层次、有针对性的解决方案。
MAP沉降法主要是通过以下化学反应:Mg2++NH4++PO43-=MgNH4PO43-=向含有大量氨氮的废水中添加磷盐和镁盐,使之达到适当比例,这样可以在[Mg2+][NH4+][PO43-]>2.5×10–13时从废水中除去氨氮。化学性氧化是指直接将氨氮氧化为氮的强氧化剂。

氨氮废水自流至脱氨塔进一步处理
在对企业生产车间的氨氮废水进行自流至污水调节池进行水质水量调整后,定量泵入污水收集池,收集池内通过投加石灰或液碱,将废水的酸碱度调整到适合于氨分离的pH值,然后将废水自流至脱氨塔进一步处理,使氨氮(NH3-N≤15mg/L)达标排放,同时采用脱氨助剂定量投加,使其与废水充分混合,加快废水中游离NH3的转化和生成。经过后续处理,处理后的废水若有其它污染物达标排放,若无其他污染物则可直接排放。因分离出的NH3气相浓度较高,需作进一步处理。

(作者: 来源:)