常用的高浓度氨氮废水处理方法常用的高浓度氨氮废水处理方法:吹脱法在高浓度氨氮废水处理技术中,常用的方法是吹脱法。该技术具有操作简单、控制方便、稳定性强、处理效果好等特点。一是提高废水的pH值,将氨氮废水中的离子氨转化为分子氨,并以空气或蒸汽的形式排放。该方法主要用于处理受水温、气液比、布水负荷和pH值影响的高浓度氨氮废水。化学沉淀法化学沉淀法具有工艺设计简单、反应过程稳定、不易受外
氨氮废水设备
常用的高浓度氨氮废水处理方法
常用的高浓度氨氮废水处理方法:
吹脱法
在高浓度氨氮废水处理技术中,常用的方法是吹脱法。该技术具有操作简单、控制方便、稳定性强、处理效果好等特点。一是提高废水的pH值,将氨氮废水中的离子氨转化为分子氨,并以空气或蒸汽的形式排放。该方法主要用于处理受水温、气液比、布水负荷和pH值影响的高浓度氨氮废水。
化学沉淀法
化学沉淀法具有工艺设计简单、反应过程稳定、不易受外界因素干扰、抗冲击能力强、脱氮效果好等特点。它能处理高浓度的氨氮废水,具有良好的脱氮效果。NH4+NH4-NH4-
离子交换法的操作过程比较复杂,载体交换法采用沸石,以去除氨氮。该技术比其它处理技术更适合于低浓度氨氮废水处理。离子交换法是一种去除树脂中重碳酸盐、氯化物和离子的技术。
膜分离法
反渗透技术,又称反渗透技术,具有能耗低、无污染、技术、维护简单等特点,能保证氨氮去除效果。当原水通过半渗透膜时,通过压力切断其它溶质分子时,反渗透是一种物理化学方法。它对离子没有选择性。因此,在去除的同时,还可以去除其他无机盐,从而降低水的矿化程度。

活性炭吸附法对有机废气的影响
活性炭吸附法,其主要原因是部分有机废气中含有漆渣微粒,漆渣会堵塞活性炭吸附孔或粘附在吸附设备上,要先通过过滤或洗涤等预处理措施去除渣。采用活性碳吸附法,适宜处理大风量40℃、低浓度有机废气。含量高.高温有机废气具有危险性,一般宜采用直接燃烧法或催化燃烧法。在技术上,活性炭吸附技术比较简单,但是由于活性炭吸附饱和后,吸附量很难保证废气能连续达到排标放,活性炭吸附设备如不脱附再生或更换,则装上活性炭后,如定期脱附或更换,成本将大幅增加,因此,采用活性炭吸附法对有机废气进行处理,超标排放较多。

一般氨氮废水处理技术过程中,对上层污水污泥进行浓缩或氧化脱水
一般氨氮废水处理技术过程中,对上层污水污泥进行浓缩或氧化脱水的滤液需要采用主要工艺处理。
浓缩液中氮含量高,会增加主要工艺处理负荷,从而影响水中氮处理指标。
BABE将处理A/O过程中的部分污泥回流到BABE间歇曝气池,BABE处理TN污泥浓缩液或污泥脱水滤液。
BABE池间歇曝气不仅能有效延长污泥寿命,还能实现进液氮的全硝化。同时,由于BABE池消化条件好,有机负荷低,温度控制好(一般温度控制在30℃),可以有效增加污泥中硝化细菌的数量。
BABE间歇曝气后,将富含硝化菌的混合液与A/O内回流和进水一起进入A/O工艺的主流程,可以实现充分的反硝化脱氮,增强系统对氮的作用。

氯化反应快,设备投资少,但安全储存要求高
试验结果表明,随着Cl/N含量的增加,水中的余氯浓度也随之下降,当Cl/N含量较大时,由于残留次氯酸(即游离余氯)含量的增加,水中的余氯浓度也随之上升,这种较小值被称为间断点(通常称为折点)。根据现有理论,Cl/N比为7.6,在处理废水时,由于氯与废水中有机物的反应,C1/N比为7.6,通常为10。当酸度不在中性范围内时,三产生量大,脱氮效率降低。
当酸碱度为6~7mg/mg或0.5~2.0小时时时,酸碱度为6~7%,酸碱度为6~7。适用于低浓度氨氮废水的处理。
的实际需求与温度、酸碱和氨氮浓度有关。有时候氧化剂需要9~10mg/mg的氯点,而用氯化法处理的出水通常需要活性炭或SO2反氯化去除水中残留的氯。氯化反应快,设备投资少,但安全储存要求高,处理成本高。如果用次氯酸或二氧化氯发生装置代替,运行成本低。目前国内发生装置生产的氯成本高。所以氯化法一般适合给水处理,不适合高浓度、高水量的氨氮废水。

(作者: 来源:)