离子溅射镀膜原理及特点离子溅射镀膜原理:离子溅射镀膜是在部分真空的溅射室中辉光放电,产生正的气体离子;在阴极(靶)和阳极(试样)间电压的加速作用下,荷正电的离子轰击阴极表面,使阴极表面材料原子化;形成的中性原子,从各个方向溅出,射落到试样的表面,于是在试样表面上形成一层均匀的薄膜。特点:对于任何待镀材料,只要能做成靶材,就可实现溅射(适合制备难蒸发材料,不易得到高纯度的化合物所
天津场发射扫描电镜价格
离子溅射镀膜原理及特点
离子溅射镀膜
原理:离子溅射镀膜是在部分真空的溅射室中辉光放电,产生正的气体离子;在阴极(靶)和阳极(试样)间电压的加速作用下,荷正电的离子轰击阴极表面,使阴极表面材料原子化;形成的中性原子,从各个方向溅出,射落到试样的表面,于是在试样表面上形成一层均匀的薄膜。
特点:对于任何待镀材料,只要能做成靶材,就可实现溅射(适合制备难蒸发材料,不易得到高纯度的化合物所对应的薄膜材料);溅射所获得的薄膜和基片结合较好;溅射工艺可重复性好,膜厚可控制,同时可以在基片上获得厚度均匀的薄膜。

影响扫描电镜的分辨本领的主要因素
影响扫描电镜的分辨本领的主要因素有:
A.入射电子束光斑直径:扫描电镜分辨能力的极限一般来说,热阴极电子的小束斑直径可以减小到6nm,场发射电子可以使束斑直径小于3nm
B.入射电子束在样品中的膨胀效应:扩散程度取决于入射电子的能量和样品的原子序数束流能量越高,样品的原子序数越小,电子束的相互作用体积越大,信号产生区域随电子束的扩散而增大,从而降低了分辨率
C.使用的成像方式和调制信号:当二次电子作为调制信号时,由于其能量低(小于50ev),平均自由程短(10~100 nm左右),只有表面50-100nm范围内的二次电子才能从样品表面逸出,散射次数非常有限基本上不向侧面延伸,所以二次电子像的分辨率大约等于束斑直径.
场发射电子所选用的阴极材料
场发射电子所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴极的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。(上)阳极主要是改变场发射的拔出电压(extraction voltage),以控制针尖场发射的电流强度,而第二(下)阳极主要是决定加速电压,以将电子加速至所需要的能量。

电子束引致电流(Electron
电子束引致电流(Electron-beam induced Current , EBIC):当一个p-n接面(Junction)经电子束照射后,会产生过多的电子-空位对,这些载子扩散时被p-n接面的电场收集,外加线路时即会产生电流。阴极发光(Cathodoluminescence):当电子束产生之电子-空位对再结合时,会放出各种波长电磁波,此为阴极发光(CL),不同材料发出不同颜色之光。样品电流(Specimen Current):电子束射到样品上时,一部份产生二次电子及背向散射电子,另一部份则留在样品里,当样品接地时即产生样品电流。

(作者: 来源:)