凌成五金陶瓷线路板——氧化铝陶瓷线路板定做
HTCC
HTCC又称之为“高温共烧双层陶瓷”,生产加工流程与LTCC极其类似,关键的不同点取决于HTCC的陶瓷粉末状并无添加玻璃钢材质。HTCC务必在高温1300~1600℃自然环境下干躁硬底化成生胚,然后一样钻上导埋孔,以网版印刷工艺填孔与印刷路线,以其共烧温度较高,促使金属电导体材质的挑选受到限制,其具体的材
氧化铝陶瓷线路板定做
凌成五金陶瓷线路板——氧化铝陶瓷线路板定做
HTCC
HTCC又称之为“高温共烧双层陶瓷”,生产加工流程与LTCC极其类似,关键的不同点取决于HTCC的陶瓷粉末状并无添加玻璃钢材质。HTCC务必在高温1300~1600℃自然环境下干躁硬底化成生胚,然后一样钻上导埋孔,以网版印刷工艺填孔与印刷路线,以其共烧温度较高,促使金属电导体材质的挑选受到限制,其具体的材质为溶点较高但导电率却不佳的钨、钼、锰等金属,终再层叠煅烧成形。氧化铝陶瓷线路板定做
凌成五金陶瓷路线板——氧化铝陶瓷线路板定做
热学性能
陶瓷基板的热学性能主要包括热导率、耐热性、热膨胀系数和热阻等。陶瓷基板在器件封装中主要起散热作用,因此其热导率是重要的技术指标;耐热性主要测试陶瓷基板在高温下是否翘曲、变形,表面金属线路层是否氧化变色、起泡或脱层,内部通孔是否失效等。
陶瓷基板的导热特性,不仅与陶瓷基片的材料热导率有关(体热阻),还与材料界面结合情况密切相关(界面接触热阻)。因此,采用热阻测试仪(可测量多层结构的体热阻和界面热阻)能有效评价陶瓷基板导热性能。氧化铝陶瓷线路板定做
可靠性测试与分析
可靠性主要测试陶瓷基板在特定环境下(高温、低温、高湿、辐射、腐蚀、高频振动等)的性能变化,主要内容包括耐热性、高温存储、高低温循环、热冲击、耐腐蚀、抗腐蚀、高频振动等。对于失效样品,可采用扫描电镜(SEM)和X射线衍射仪(XRD)分别进行微观和成分分析;采用扫描声显微镜(SAM)和X射线检测仪(X-Ray)进行焊接界面和缺陷分析。
电学性能
陶瓷基板电学性能主要指基板正反面金属层是否导通(内部通孔质量是否良好)。由于DPC陶瓷基板通孔直径较小,在电镀填孔时会出现未填实、气孔等缺陷,一般可采用X射线测试仪(定性,)和飞针测试机(定量,便宜)评价陶瓷基板通孔质量。氧化铝陶瓷线路板定做
由于高分子绝缘材料的导热系数较低,同时耐热性能较差,如果要提高铝金属基板的整体导热性能及耐热性能,需要替换掉绝缘材料,但是绝缘材料的启用,使得同线路无法自傲铝金属基板之上布置,所以目前直接提高铝金属基板的导热系数还无法实现。而陶瓷散热基板,其具有新的导热材料和新的内部结构,以消除铝金属基板所具有的缺陷,从而改善基板的整体散热效果。下表为陶瓷散热基板与金属散热基板比较,让我们从各项对比参数来总结性能,为什么高功率LED散热适合的基板是选用展至科技陶瓷基板。 氧化铝陶瓷线路板定做
(作者: 来源:)