在废气处理设备工艺中吸附法应用比较广泛的一种。在我们的日常生活中也会经常用到活性炭去处理生活中的一些异味,像去除水中的异味、微污染物质等等。 活性炭吸附工艺原理,就是活性炭具有发达的空隙,比表面积大,具有很高的吸附能力的特点。根据活性炭的这个特点,在废气处理设备中,当VOC有机废气进入活性炭装置中时,由于活性炭固体表面上存在着未平衡和未饱和的分子引力,当气体通过活性炭时,就能吸
活性炭更换
在废气处理设备工艺中吸附法应用比较广泛的一种。在我们的日常生活中也会经常用到活性炭去处理生活中的一些异味,像去除水中的异味、微污染物质等等。活性炭吸附工艺原理,就是活性炭具有发达的空隙,比表面积大,具有很高的吸附能力的特点。根据活性炭的这个特点,在废气处理设备中,当VOC有机废气进入活性炭装置中时,由于活性炭固体表面上存在着未平衡和未饱和的分子引力,当气体通过活性炭时,就能吸引废气内污染分子,使其浓聚并保持在固体表面,污染物质就会被吸附住,废气经过滤器后,进入设备排尘系统,净化后的气体高空达标排放。

在制备过程中,具有氧化性的高温活化气体无序碳原子及杂原子首先发生反应,使原来封闭的孔打开,进而基本微晶表面暴露,然后活化气体与基本微晶表面上的碳原子继续发生氧化反应,使孔隙不断扩大。一些不稳定的炭因气化生成CO、CO2、H2和其他碳化合物气体,从而产生新的孔隙,同时焦油和未炭化物等也被除去,终得到活性炭产品。活性炭发达的比表面积则源自中孔、大孔孔容的增加,形成的大孔、中孔和微孔的相互连接贯通。由于物理法工艺流程相对简单,产生的废气以CO2和水蒸气为主,对环境污染较小,而且终得到的活性炭产品比表面积高、孔隙结构发达、应用范围广,因此世界范围内的活性炭生产厂家中70%以上都采用物理法生产活性炭。炭活化过程中产生大量的余热,可满足原料烘干、余热锅炉制高温蒸汽、产品的洗涤烘干等所需热能。
利用微生物的新陈代谢,将吸附在活性炭上的污染物质氧化降解的方法称作生物再生法。活性炭的孔径一般只有几纳米,微生物很难进入其孔隙内部,通常微生物细胞酶可以流至细胞胞外,通过活性炭对酶的吸附,在炭表面形成酶促中心,分解污染物,达到再生的目的。生物法的投资和运行费用相对较低,但再生时间较长,水质和温度对再生效果的影响很大。同时,微生物处理污染物的选择性很强,且一般不能将所有的有机物彻1底分解成CO2和H2O,其中间产物仍残留在微孔中,多次循环后再生效率会明显降低。

活性炭纤维被认为是目前较为理想的吸附介质。活性炭纤维(ACF)是继粉末状和颗粒状活性炭之后的第3代活性炭产品,通常以有机纤维为原料经预处理一炭化一活化后制得。与颗粒状活性炭相比,活性炭纤维具有比表面积大、微孔丰富、孔径小、分布窄、吸附量大、吸附速率快等特点,吸附能力较一般的活性炭高1-10倍。 与其他类型的吸附材料相比,活性炭纤维的微孔容积大,吸附容量高,具有良好的脱附性能,因此可以利用ACF对废气进行价值回收。 研究表明,在相同条件下经过多次重复操作,活性炭纤维的吸附曲线都非常接近,因此理论上认为ACF可以多次再生而其吸附性能却不会发生大的变化,闪此得到了广泛应用。

(作者: 来源:)