人工智能控制器
与驱动器的特性无关。现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对必须具体对象具体设计。它们对新数据或新信息具有很好的适应性。它们能解决常规方法不能解决的问题。它们具有很好的抗噪声干扰能力。它们的实现十分便宜,特别是使用小配置时。 它们很容易扩展和修改。
也有一些的文章论述
智能控制器公司
人工智能控制器
与驱动器的特性无关。现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对必须具体对象具体设计。它们对新数据或新信息具有很好的适应性。它们能解决常规方法不能解决的问题。它们具有很好的抗噪声干扰能力。它们的实现十分便宜,特别是使用小配置时。 它们很容易扩展和修改。
也有一些的文章论述运用模糊逻辑控制感应电机的磁通和力矩。它的输入标定因子是变化的。实验结果也验证了所提方案的有效性。该系统中模糊速度控制器与常规的PI速度控制器和CRPWM塑变器一起使用,它往往用来补偿可能的惯性和负载转矩的扰动。神经网络的应用 现如今,有大量文章讨论神经网络在交流电机和驱动系统的条件监测和诊断中的运用。
总而言之,当采用自适应模糊神经控制器,规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。,随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术所替代。不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经,以及遗传算法都可看成一类非线性函数近似器。
(作者: 来源:)