企业视频展播,请点击播放视频作者:合肥新高电子有限公司
车牌识别系统的关键技术及算法。对车牌图像进行图像形态学操作:图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像处理中消除噪声的不可或缺的操作,其处理的结果的好坏将直接影响到对后续图像进行处理和分析的有效性和可靠性。常用的滤波操作方法有很多种,如中值滤波、形态学滤波、高斯滤波、双边滤波等。我们在这里介绍一
车辆道闸设备
企业视频展播,请点击播放
视频作者:合肥新高电子有限公司
车牌识别系统的关键技术及算法。对车牌图像进行图像形态学操作:图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像处理中消除噪声的不可或缺的操作,其处理的结果的好坏将直接影响到对后续图像进行处理和分析的有效性和可靠性。常用的滤波操作方法有很多种,如中值滤波、形态学滤波、高斯滤波、双边滤波等。我们在这里介绍一下中值滤波和本文所研究系统采用的形态学滤波。

车牌识别系统的关键技术及算法。车牌字符分割我国车牌的一个字符是汉字,根据汉字的特征,设置两个阈值去分割车牌的一个汉字字符,两个阈值分别为1和2。从左向右扫描灰度化的车牌图像,一个大于阈值1的列,即为汉字的开始位置,记为S然后,继续扫描车牌图像,直到寻找到小于阈值1的列,记为H,比较这两列的宽度H-S与2的大小,如果H-S<2,则继续扫描图像直到找到与S列相差的宽度大于2且满足像素值为255的像素的个数小于阈值的列。所寻找到的列就是车牌的汉字字符的结束列。在分割不连通的汉字的时候,这种改进的方法起到作用是显著的。

车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择1佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。

车牌识别基本内容。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车唯1一的车牌号码,从而完成识别过程。通过一些后续处理手段可以实现停车场收费管理,交通流量控制指标测量,车辆定位,汽车防盗,高速公路超1速自动化监管等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。

(作者: 来源:)