人工智能控制器
误差反向传播技术是多层前聩ANN常用的学习技术。如果网络有足够多的隐藏层和隐藏结点以及适宜的激励函数,多层ANN只能实现需要的映射,没有直接的技术选择优隐藏层、结点数和激励函数,通常用尝试法解决这个问题,反向传播训练算法是基本的快下降法,输出结点的误差反馈回网络,用于权重调整,搜索优。
也有一些的文章论述运用模糊逻辑控制感应电机的
人工智能报价
人工智能控制器
误差反向传播技术是多层前聩ANN常用的学习技术。如果网络有足够多的隐藏层和隐藏结点以及适宜的激励函数,多层ANN只能实现需要的映射,没有直接的技术选择优隐藏层、结点数和激励函数,通常用尝试法解决这个问题,反向传播训练算法是基本的快下降法,输出结点的误差反馈回网络,用于权重调整,搜索优。
也有一些的文章论述运用模糊逻辑控制感应电机的磁通和力矩。它的输入标定因子是变化的。实验结果也验证了所提方案的有效性。该系统中模糊速度控制器与常规的PI速度控制器和CRPWM塑变器一起使用,它往往用来补偿可能的惯性和负载转矩的扰动。神经网络的应用 现如今,有大量文章讨论神经网络在交流电机和驱动系统的条件监测和诊断中的运用。
运用常规反向传播学习算法。该系统由两个子系统构成,一个系统通过电气动态参数的辩识自适应控制定子电流,另一个系统通过对机电系统参数的辩识自适应控制转子速度。后值得指出的是现在发表的大多数有关ANN对各种电机参数估计的,一个共同的特点是,它们都是用多层前馈ANNS,用常规反向传播算法,只是学习算法的模型不同或被估计的参数不同。
由于控制简单,直流传动在过去得到了广泛的使用。但由于它们众所周知的限制以及DSP技术的进步,直流传动正逐渐被的交流传动所取代。但近,许多厂商也推出了一些改进的直流驱动产品充分模糊”控制器才是完全意义上的模糊控制器,被模糊化的控制器易于实现,往往通过改造现有古典控制器得以实现,如被模糊化的PI控制器(FPIC)使用模糊逻辑改变控制器的比例、积分参数,从而使系统的性能得到提高
(作者: 来源:)