挑选高频感应加热设备的方法
一、加热的深度和面积选择:加热深度深,面积大,整体加热,应选用功率大,频率低的感应加热设备;加热深度浅,面积小,局部加热,选用相对功率小,频率高的感应加热设备。
二、感应部件与设备的连线距离选择:连线长,使用水冷电缆连接,应选用相对功率大的感应加热设备。
三、被加热的工件形状和尺寸选择:
工件大,棒料,实材应选用相对功率大,频
高频加热机工作原理
挑选高频感应加热设备的方法
一、加热的深度和面积选择:加热深度深,面积大,整体加热,应选用功率大,频率低的感应加热设备;加热深度浅,面积小,局部加热,选用相对功率小,频率高的感应加热设备。
二、感应部件与设备的连线距离选择:连线长,使用水冷电缆连接,应选用相对功率大的感应加热设备。
三、被加热的工件形状和尺寸选择:
工件大,棒料,实材应选用相对功率大,频率低的感应加热设备;板材,工件小,管材,齿轮等,则选用相对功率小,频率高的感应加热设备。
四、工艺选择:一般来说,淬火,焊接等工艺,相对可以选择功率小一些,频率高一些;回火,退火等工艺,相对功率选大一些,频率选低一些;红冲,热锻,熔炼等,需要透热效果好的工艺,则功率选得更大,频率选得更低。
五、工件的材料选择:金属材料中熔点高的相对选用功率大一些,熔点低的相对选用功率小一些;电阻率小的选用功率大一些,电阻率大的选用功率小一些等等。
六、加热速度选择:加热速度快,应选择功率相对较大,频率相对较低的感应加热设备。
七、设备的连续工作时间选择:连续工作时间长,相对选择功率略大的感应加热设备,相反,则选择功率相对较小的设备。
高频感应加热设备的优势
1、可局部加热。
2、绿色环保,不产生有害物质。
3、省能源,处理时间以外,仅待机电力就可以,很合理,省电。
4、被加热物质,有诸条件要求,但只要是金属就可以加热。
5、可加热,与其它方法相比,以秒为单位即可加热到所要求的目标温度。
6、可在相对稳定的温度下自动运转。即使没有熟练的技能,也能进行稳定的生产加工。
高频电流的趋肤效应,可以使金属物体中的涡流随频率的升高,而集中在金属表层环流。这样就可以通过控制工作电流的频率,实现对金属物体加热深度的控制。既能提高加工工艺的质量,又可以保证能量被充分地利用。
当用于红冲、热煅及工件整体退火等工艺时,由于工件需要的加热深度大,甚至需要透热.这时可以将感应加热设备的工作频率降低(如中频、超音频);当用于表面淬火、焊接等工艺时,它们需要的加热深度小,这时则可以将工作频率升高(如高频)。另一方面,对于体积较小的工件或管材、板材,选用高频加热方式,对于体积较大的工件,选用中频、超音频加热方式。其中高频焊机一般由高频发生器和馈电装置二个部分组成,它的作用是产生高频电流并控制它。
由于感应加热时间短、速度快,并且还是非接触式(加热物体不需要与感应圈接触)的加热。所以,比其它的加热方式氧化和脱碳现象都比较轻微,一般不需要做气体保护处理,确实有需要时也比较容易于进体保护。
会合角是钢管两边部进入挤压点时的夹角。由于邻近效应的作用,当高频电流通过钢板边缘时,钢板边缘会形成预热段和熔融段(也称为过梁),这过梁段被剧烈加热时,其内部的钢水被迅速汽化并喷溅出来,形成闪光,会合角的大小对于熔融段有直接的影响。
会合角小时邻近效应显著,有利提高焊接速度,但会合角过小时,预热段和熔融段变长,而熔融段变长的结果,使得闪光过程不稳定,过梁爆坡后容易形成深坑和,难以压合。
会合角过大时,熔融段变短,闪光稳定,但是邻近效应减弱,焊接效率明显下降,功率消耗增加。同时在成型薄壁钢管时,会合角太大会使管的边缘拉长,产生波浪形折皱。现时生产中我们一般在2°--6°内调节会合角,生产薄板时速度较快,挤压成型时要用较小的会合角;生产厚板时车速较慢,挤压成型时要用较大的会合角。有厂家提出一个经验公式:会合角×机组速度≮100,可供参考。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
高频焊机常常会起到巨大的作用,控制系统是机器的发令,传统的包装机械控制系统多采用继电器、接触器控制电路,其复杂程度随着执行机构的增多,以及调整部位的增加而加大,使得机器也越来越复杂,给制造、调整、使用和维修均带来不便。而机电一体化,可用微机、传感技术、新型传动技术取代笨重的电气控制柜和驱动装置,使零部件数量剧减,结构大为简化,体积也随之缩小。淬火后的丝杠硬度高、脆性大,校正工作难度较大,不利于产品的大批量生产,因此要求淬火时对丝杠径跳进行严格控制。
(作者: 来源:)