描电镜和透射电镜对样品的要求 1、扫描电镜 扫描电镜制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法将特定剖面呈现出来,从而转化为可以观察的表面。这样的表面如果直接观察,看到的只有表面加工损伤,一般要利用不同的化学溶液进行择优腐蚀,才能产生有利于观察的衬度。不过腐蚀会使样品失去原结构的部分真实情况,同时引入部分人为的干扰,对样品中厚度的薄层来说,造成的
三维重构机构
描电镜和透射电镜对样品的要求
1、扫描电镜
扫描电镜制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法将特定剖面呈现出来,从而转化为可以观察的表面。这样的表面如果直接观察,看到的只有表面加工损伤,一般要利用不同的化学溶液进行择优腐蚀,才能产生有利于观察的衬度。不过腐蚀会使样品失去原结构的部分真实情况,同时引入部分人为的干扰,对样品中厚度的薄层来说,造成的误差更大。
2、透射电镜
由于透射电镜得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,例如存储器器件的透射电镜样品一般只能有10~100nm的厚度,这给透射电镜制样带来很大的难度。初学者在制样过程中用手工或者机械控制磨制的成品率不高,一旦过度削磨则使该样品报废。透射电镜制样的另一个问题是观测点的定位,一般的制样只能获得10mm量级的薄的观测范围,这在需要分析的时候,目标往往落在观测范围之外。目前比较理想的解决方法是通过聚焦离子束刻蚀(FIB)来进行精细加工。

扫描电子显微镜的应用
扫描电子显微镜广泛用于材料科学(金属材料、非金属材料、纳米材料)、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害(火灾、失效分析)鉴定、宝石鉴定、工业生产中的产量鉴定及生产工艺控制等。
显微镜在材料科学、金属材料、陶瓷材料半导体材料、化学材料等领域,进行材料的微观形貌、组织、成分分析。各种材料的形貌组织观察,材料断口分析和失效分析,材料实时微区成分分析,元素定量、定性成分分析,的多元素面扫描和线扫描分布测量,晶体/晶粒的相鉴定,晶粒尺寸、形状分析,晶体、晶粒取向测量。
其工作原理为:在高真空的镜筒中,由电子枪产生的电子束经电子会聚透镜聚焦成细束后,在样品表面逐点进行扫描轰击,产生一系列电子信息(二次电子、背反射电子、透射电子、吸收电子等),由探测器将各种电子信号接收后经电子放大器放大后输入由显像管栅极控制的显像管。

扫描电子显微镜的结构
扫描电子显微镜的结构
为透射电镜是TE进行成像的,这就要求样品的厚度一定要确保在电子束可以穿透的尺寸范围内。因此就需要通过各种较为繁杂的样品制备手段把大尺寸样品转变到透射电镜能给接受的程度。
可不可以直接利用样品表面材料的物质性能进行微观成像,成为科学家追求的目标。
通过努力,这种想法已成为现实——扫描电子显微镜(ScanningElectronicMicroscopy,SEM)。
扫描电子显微镜(SEM)——运用特别细的电子束在被观测样品表面上进行扫描,通过分别收集电子束和样品相互作用产生的一系列电子信息,通过转换、放大而成像的电子光学仪器。是探索研究三维表层构造很有帮助的工具。
(作者: 来源:)