在整个射频通信中,主要包含以下几种频率:传输频率、接收频率、中频和基带频率。基带频率是用来调制数据的信号频率。而真正的传输频率则比基带频率高很多,一般的频谱范围是500MHz到38GHz,数据信号也是在此高频下进行传输的。一般来说,射频系统具有非常强大的传输调制信号的功能,即使在有干扰信号和阻断信号的情况下,该系统也可以做到以高的质量发送并且以好的灵敏度接收调制信号。
毫米
半导体芯片封装测试工厂
在整个射频通信中,主要包含以下几种频率:传输频率、接收频率、中频和基带频率。基带频率是用来调制数据的信号频率。而真正的传输频率则比基带频率高很多,一般的频谱范围是500MHz到38GHz,数据信号也是在此高频下进行传输的。一般来说,射频系统具有非常强大的传输调制信号的功能,即使在有干扰信号和阻断信号的情况下,该系统也可以做到以高的质量发送并且以好的灵敏度接收调制信号。

毫米波的优点:极宽的带宽,通常认为毫米波频率范围为26.5~300GHz,带宽高达273.5GHz,超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达135GHz,为微波以下各波段带宽之和的5倍。这在频率资源紧张的今天无疑具有吸引力。
波束窄:在相同天线尺寸下毫米波的波束要比微波的波束窄得多。例如一个12cm的天线,在9.4GHz时波束宽度为18度,而94GHz时波速宽度仅1.8度。因此能分辨相距更近的小目标或更为清晰地观察目标的细节。
在地球村概念兴起以后,全世界经济逐渐一体化,射频连接器的通用规范也就十分必要。不然,标准不统一,只会增加连接器发展的壁垒。射频同轴连接器转换器同其他电子元件想必,发展历史较短。1930年的时候,世界上出现了较早的射频同轴连接器UHF,到了打仗期间,由于急需,随着雷达、电台和微波通信的发展,产生了N、C、BNC、TNC、等中型系列,1958年后出现了SMA、SMB、SMC等小型化产品,1964年制定了美国的标准MIL-C-39012《射频同轴连接器总规范》,从此,射频同轴连接器开始向标准化、系列化、通用化方向发展。
微波这段电磁频谱具有不同于其他波段的如下重要特点:选择性加热,物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。因此,对于食品来说,含水量的多少对微波加热效果影响很大。
(作者: 来源:)