当前我公司生产的III型储氢瓶的储氢密度为3.9%而IV型储氢瓶的储氢密度可以达到5.5%,IV型瓶具有低成本、小重容、高密度、轻量化的优势。当前还是以35MPa的III型瓶为主,正在向70MPa过渡。
液氢温度远低亍LNG、液氮,液化成本更高。
单位体积下液氢储氢量是35MP高压氢3倍。
氢气的密度受到压力及温度的影响正常按
Ⅲ氢气瓶厂家
当前我公司生产的III型储氢瓶的储氢密度为3.9%而IV型储氢瓶的储氢密度可以达到5.5%,IV型瓶具有低成本、小重容、高密度、轻量化的优势。当前还是以35MPa的III型瓶为主,正在向70MPa过渡。
液氢温度远低亍LNG、液氮,液化成本更高。
单位体积下液氢储氢量是35MP高压氢3倍。
氢气的密度受到压力及温度的影响正常按照公称工作压力在基准温度15℃ -35MPa压力下的密度为0.024kg/L
储氢瓶瓶阀
氢系统的储氢瓶口阀应集成主关断阀、单向阀和压力释放装置(PRD)、溢流阀。主关断阀的操作应采用电动方式,并应在驾驶员易于操作的部位,当断电时应处于自动关闭状态。压力释放阀(PRD)排放氢气时,排放气体流动的方位、方向远离人、电源、火源。同时在储氢瓶进口通道上应装有手动关断阀,在加氢、排氢或维修时,可单独地隔断各个储氢容器;
供氢:气瓶——瓶阀(过流)——过滤器——减压(带电磁切断)——电堆
车载供氢系统振动试验
振动试验
冲击试验针对的是整车非常极限的工况,比如发生碰撞。但车辆在安全行驶过程中,很少发生强烈的碰撞,更多的是来自地面的振动激励,这种振动是随机的,也就是说车辆在行驶时,我们的车载供氢系统会长期处于一个随机振动的环境中。这对于以高压气态储存氢气的车载供氢系统是非常严峻的考验。
同时也意味着每个阀件、管路、接头都要在这样复杂的环境中保持自身的功能正常及气密正常。为此,我们除了对每个零部件都单独做了振动测试外,对集成的系统也要进行振动测试。
同样作为车辆的储能装置,可以参考GB38031-2020《电动汽车用动力蓄电池安全要求》进行系统级的振动测试。如下图所示,车载供氢系统
进行了X、Y、Z三坐标的随机振动及定频振动。
(作者: 来源:)