人脸识别需要积累采集到的大量人脸图像相关的数据,用来验证算法,不断提高识别准确性,这些数据诸如A Neural Network Face Recognition Assignment(神经网络人脸识别数据)、orl人脸数据库、麻省理工学院生物和计算学习中心人脸识别数据库、埃塞克斯大学计算机与电子工程学院人脸识别数据等。该理论侧重于人脸实时数据的中间值处理,从而可以在
人脸识别生产厂家

人脸识别需要积累采集到的大量人脸图像相关的数据,用来验证算法,不断提高识别准确性,这些数据诸如A Neural Network Face Recognition Assignment(神经网络人脸识别数据)、orl人脸数据库、麻省理工学院生物和计算学习中心人脸识别数据库、埃塞克斯大学计算机与电子工程学院人脸识别数据等。该理论侧重于人脸实时数据的中间值处理,从而可以在识别速率和识别效能之间,达到1佳的匹配效果
随着大数据、共享时代的来临,数据安全问题也越发被重视起来,以人脸识别为代表的新一代技术革命已经展开。这些对技术的要求越来越高,既要求数据的准确性,又要保证数据的安全性,人脸识别在这方面大有可为,作为行业的主力军,企业的技术实力与能力决定着整个产业的走向,任何一点点技术的都可能带来行业的变革。
未来人脸识别的主要研究方向将围绕目前面临的一些问题,如人脸面部结构的相似性、人脸的姿态、年龄变化、复杂环境的光照变化、人脸的饰物遮挡等。

人脸识别系统由人证识别终端、通道闸、人脸识别管理客户端及平台组成。系统采用人脸识别算法,高速芯片作为识别算法的运行硬件平台,通过出入口的身1份证信息采集、实时人脸抓拍和人证比对,从而实现人证合一验证。并针对不同场所实现固定人员刷脸通行,访客人员人证比对登记,解决固定人员每次需要刷证或输入密码的问题,人证比对失败人员则需要安保人员或工作人员人工确认后手动放行。

(作者: 来源:)