三维内肋管产品特点
抗荷载:具有较大的比表面积,扩大了与土壤的接触面,管材表面均匀受力,填入管道波谷内的回填土和管道本身共同承受周边土壤的压力,形成管土共同作用,能够将外部荷载迅速而地分解传递到整条管线中去,较大限度地降低外部荷载对管材自身的冲击性影响。适用流体和条件由于能够有效的促进湍流的发生并扩展管内换热面积,与连续肋相比,离散的三维肋,更具有易于
控制空预器磨损

三维内肋管产品特点
抗荷载:具有较大的比表面积,扩大了与土壤的接触面,管材表面均匀受力,填入管道波谷内的回填土和管道本身共同承受周边土壤的压力,形成管土共同作用,能够将外部荷载迅速而地分解传递到整条管线中去,较大限度地降低外部荷载对管材自身的冲击性影响。适用流体和条件由于能够有效的促进湍流的发生并扩展管内换热面积,与连续肋相比,离散的三维肋,更具有易于导致流体产生回流,横向二次流以及涡旋等,对于强化水,空气,乙二醇与水的混合物等工质的对流换热显著效果。
抗破坏:波纹中间有直立内肋,而且内肋与波纹是连续缠绕整条管材,能够极大提高波峰结构的稳定性、环刚度的稳定性和管材的抗蠕变性,韧性得到很大提高,具有优良的抗韧性破坏的能力,耐慢速裂纹增长性能显著提高。
抗拉伸:外壁结构比中空壁管高40%,因此内肋增强聚乙烯(PE)螺旋波纹管的内肋中空带材的粘接面较宽厚,大大增加了缝的拉伸强度,从而使得管材具有更优异的抗横向拉力。
抗渗漏:采用承插式电热熔连接,承口与插口是由实壁PE管加工而成,其精密度很高,在插口布置电热网,当插口插入承口后,通过电流使得插口与承口的表面PE材料熔融在一起达到密封效果,整个熔接过程采用设备,通过温度和时间控制来可靠实现,这样的连接方式不仅将渗漏的可能性从本质上降低,同时保证了接口的强度和提高了横向拉力强度。如图6所示,三维肋管GGH低的壁温发生在P处,只要此部位壁温高于烟气腐蚀温度,则整个换热面壁温就高于烟气的腐蚀温度。

三维肋管换热设备的特点
三维肋管式换热设备的结构特点、制造以及在某润滑油加氢精制装置中的试用情况,结合试用效果提出在石化行业推广使用。换热设备是石化行业广泛应用的一种设备,通过其进行热量交换以满足生产工艺的需要。肋片区域的速度矢量图,用速度矢量分布说明了烟气垂直翻越的过程。据统计,换热设备在化工厂建设中约占总投资的20%在装置检修中其检修工作量可超过60%,因此换热设备的研制开发备受重视。尤其在设备大型化、低能耗的发展趋势下,研制、开发和应用高效节能强化传热元件对企业节能具有重要意义。文中对三维肋管式换热设备的结构特点、制造及其在石油化工装置上的应用进行了简要叙述。
三维肋管是一种新型的管内(外)侧强化传热元件,是对表面有针状、鳞状肋片的各种强化换热管件的总称,其热力性能优于目前已广泛用于各类换热器的螺纹管、二维内肋及波纹管等。波纹管管内被挤出凸肋,从而改变了管内壁滞流层的流动状态,减少了流体传热热阻,增强了传热效果。只要管材壁厚不小于0.8mm,各种普通金属光管(包括铜、铝、不锈钢等)都可以通过机床加工成三维肋管、外肋管或内—外肋管。

三维传热器计算在大型煤粉锅炉炉膛中的应用
随着发电锅炉容量和参数的不断提高,对锅炉运行的可靠性和经济性要求亦愈加严格。因此,准确地进行炉膛传热计算对于大型发电锅炉设计的成功与否十分重要。
对于大型锅炉的炉膛,其上部通常布置有相当数量的屏式过热器,“锅炉机组热力计算标准方法”将屏式过热器简单地处理成炉膛辐射受热面,且采用零维模型,屏式过热器的传热计算很不准确。而通常的锅炉炉膛传热三维数值计算方法采用全炉膛统一的计算分区形式,不能适用于大型锅炉炉膛传热计算。使用本发明所设计的机床对各种金属材质的圆管内壁进行刻切加工,在圆管内壁形成排列有序的针肋(或鱼鳞肋)及凹槽,构成三维内肋管,对强化管内传热的效果较好,其换热系数可达光管的1。
屏式过热器的准确传热计算目前已成为大型锅炉设计的主要问题。针对这一问题,由学者提出了上、下炉膛分体耦合的炉膛传热计算模式,并且应用此模式和二阶假想面法建立了大型煤粉锅炉炉膛传热工程化三维数值计算方法。此方法不受上、下炉膛计算分区兼容条件的限制,可以按计算精度的要求细化上、下炉膛的传热计算,为大型煤粉锅炉屏式过热器的准确传热计算提供了一个可靠的方法。管内、外同时换热强化,使换热器更加高效和紧凑,是一种换热性能优异的高效传热元件。

(作者: 来源:)