一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。编制平面部即可用于结构件,优点是制品工艺过程形态稳定,又可用于装饰品,得益于它漂亮的花纹。碳纤维已经从起初的军事和航空领域,到广泛应用于人们的日常生活在200
3k碳纤维制品

一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、

人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。编制平面部即可用于结构件,优点是制品工艺过程形态稳定,又可用于装饰品,得益于它漂亮的花纹。碳纤维已经从起初的军事和航空领域,到广泛应用于人们的日常生活

在2000℃以内强度和模量随温度升高而增加、良好的抗疲劳性能、优异的摩擦磨损性能和生物相容性(组织成分及力学性能上均相容)、对宇宙辐射不敏感及在核辐射下强度增加等性能尤其是碳/碳复合材料强度随温度的升高不降反升的性能
材料都应经通过特定的高刚度和接近为零的热膨胀系数开发为空间应用。金属基复合材料具有耐高温、高导热能力、低的热膨胀系数和特定的高刚度和强度。(Jerry G. Baetz, “Metal Matrix Composites:
Their Time Has Come,” Aerospace America (November
1998), pp.14-16.)


碳纤维增强金属基复合材料
金属基复合材料与陶瓷相比,具有高的韧性和耐冲击性能,金属基多采用Al、Mg、Ni、Ti及它们的合金等其中碳纤维增强铝、镁复合材料的制备技术比较成熟。目前,在制备碳纤维增强金属基复合材料时碳纤维的表面改性主要采用气相沉积、液钠法等,但因其过程复杂、成本高,限制了碳纤维增强金属基复合材料的推广应用。同时,CFRP的阻尼性好,可延长肠线与球的接触时间,使网球获得较大的加速度。
金属基复合材料航空航天研究开始初期,有机复合材料和金属基复合
国外碳纤维的发展
1959年日本发明了用聚丙烯腈原丝生产碳纤维的方法。1962年,日本东丽公司开始生产,之后又积极研制用于生产碳纤维的原丝,并于1967年成功生产T300PAN-CF。同时,英国皇家航空研究所,对PAN纤维生产技术进行技术改进,随后英国考陶尔公司利用这项技术开始生产高强度、高模量PAN基碳纤维。1969年,日本东


丽公司研究成功特殊的单体共聚PAN基碳纤维,结合美国、法国、德国也都引进或开发了PAN原丝基碳纤维的生产。原苏联开始主要研究以人丝为原料制造碳纤维,后转向PAN基碳纤维。另外印度、南斯拉夫、以色列、韩国也在以PAN原丝制取碳纤维方面开展了大量的研制工作。由于我国碳纤维行业缺乏具有自主知识产权的核心产业化技术,产业发展不会一蹴而就。日本东丽公司的碳纤维研发与生产一直处于领水平。
(作者: 来源:)