手性一词来源于希腊语“手”(Cheiro)。自然界中存在的手性物质是指具有一定构型或构象的物质与其镜像物质不能互相重合,就象左手和右手互为不能重合的实物和镜象关系类似。手性是宇宙间的普遍特征,体现在生命的产生和演变过程中。首先组成地球生命体的基本结构单元,氨基酸几乎都是左旋氨基酸,而没有右旋氨基酸。也就是说,生命基本的东西也有左右之分。为什么自然界选择左旋氨基酸而不是右旋氨基酸
UniSil

手性一词来源于希腊语“手”(Cheiro)。自然界中存在的手性物质是指具有一定构型或构象的物质与其镜像物质不能互相重合,就象左手和右手互为不能重合的实物和镜象关系类似。手性是宇宙间的普遍特征,体现在生命的产生和演变过程中。首先组成地球生命体的基本结构单元,氨基酸几乎都是左旋氨基酸,而没有右旋氨基酸。也就是说,生命基本的东西也有左右之分。为什么自然界选择左旋氨基酸而不是右旋氨基酸作为生命的基本结构单元一直是个迷。而更加复杂的蛋白质和DNA的螺旋构象都是右旋的。海螺的螺纹和缠绕植物也都是右旋的。因此生物体内存在着手性的环境,使得生物体可以识别常规化学和物理性能完全一样的手性异构体分子。作用于生物体内的手性药
l物及农
l药,其药
l效作用多与它们和体内靶分子间的手性匹配和手性相关。因此,手性药
l物的不同对映异构体,在生理过程中会显示出不同的药
l效。甚至会出现一种对映异构体对治
l疗有效,而另一种对映异构体表现为有害性质这种现象。
二十世纪六十年代以来,色谱技术作为一种分析技术在生命科学、环境科学、药
l物分析等领域的应用日益普遍。应用在手性色谱分离方面得到很快的发展,而其中色谱填料可谓是色谱技术的核心,它不仅是色谱方法建立的基础,而且是一种重要的消耗品。色谱柱作为色谱填料的载体,当之无愧被称为色谱仪器的“心脏”。的色谱填料一直是色谱研究中丰富、有活力、富于创造性的研究方向之一。
手性色谱填料国产化之路手性色谱填料主要是通过在多孔二氧化硅基球上涂覆或键合带有手性识别位点的生物材料如纤维素,直链淀粉。如要做手性色谱填料,首先要解决的就是合成超大孔硅胶基球作为手性色谱填料的固定相载体。在纳微科技做出超大孔硅胶基球之前,全世界上只能从日本公司才能买到这种超大孔的硅胶基球,价格昂贵,每公斤高达10万元人
l民币。虽然拥有全世界比较多的色谱科研究员,发表色谱领域文章数量也于2011年就超过美国稳居世界首位,但遗憾的是色谱填料尤其是球形硅胶色谱填料一直未能实现产业化。主要原因就是色谱填料制备技术壁垒高,产业化周期长,投资大,世界上可以大规模生产球形硅胶色谱填料的也就只有四家公司,日本就占了三家。可见日本对色谱填料技术掌控能力的强大。绝大多数商业化的硅胶色谱填料的孔径一般都在10-30纳米,而用于手性硅胶色谱填料的孔径要求达到100纳米,手性色谱用的大孔硅胶比小孔硅胶制备技术难度更大。为了实现球形硅胶色谱填料产业化,纳微投资近5000万元人
l民币,坚持了十多年跨领域技术研发,突破了单分散球形硅胶色谱填料精准制造的世界难题,纳微也因此成为具备大规模生产单分散球形硅胶色谱填料的公司。纳微不仅填补在球形硅胶色谱的空白,而且为世界硅胶色谱填料精准制备技术的进步做出贡献。在此基础上,纳微又研发出超大孔硅胶色谱填料以满足手性色谱填料的要求。电子扫描电镜图对比图及孔径分布对比图可以明显看出纳微大孔硅胶无论是粒径的精
l确性,粒径均匀性,孔径均匀性,还是球的完整性及机械强度都超过日本产品。
(作者: 来源:)