广州市文睿科学仪器有限公司----金属有机框架材料ZIF-67;
利用MOFs进行燃气储存的努力可以追溯到1997年(储存)。类似的吸附体系随之先后于2003年和2005年开始用于储氢和储存。自这些开创性的尝试以后,许多深入研究致力于提高MOFs存储容量,包括增强结合亲和力和优化孔隙率,以更好地存储燃气。该领域目前已有显著进展(Figure. 1),生成的MOFs材料已经具有优于沸石和多
金属有机框架材料ZIF-67
广州市文睿科学仪器有限公司----金属有机框架材料ZIF-67;
利用MOFs进行燃气储存的努力可以追溯到1997年(储存)。类似的吸附体系随之先后于2003年和2005年开始用于储氢和储存。自这些开创性的尝试以后,许多深入研究致力于提高MOFs存储容量,包括增强结合亲和力和优化孔隙率,以更好地存储燃气。该领域目前已有显著进展(Figure. 1),生成的MOFs材料已经具有优于沸石和多孔碳的存储性能。
N和 S双掺杂的蜂窝状多孔石墨,并固化了由MOF衍生的Co9S8 化合物。由于特殊的纳米结构和这些活性组分的协同作用,使得到的复合物成为氧电还原的优良催化剂。同时该研究组提供了可控和多元活性物质修饰的多孔碳纳米材料的合成,以应用于燃料电池及其它科技设备。
即使是结构相似的MOF材料也可能具有不同的物理/化学性质,因此不同结构的MOFs混合在一锅反应产物中将极大地阻碍了对MOFs材料的性能研究。虽然这种现象在MOF材料的合成中已相对普遍存在,但至今仍然没有合适的解决方案。
使用非共价表面引发的受控自由基聚合技术,将一系列等网状UiO-66颗粒分散在液体PDMS基质中,其具有出色的均质性和胶体稳定性。得益于PDMS的固有特性,该PLs表现出低蒸气压,高热稳定性和低至-35°C的流动性。PDMS体积庞大及其固有的性,使得MOF填料的吸附特性可以在其各自的PLs中得到很大程度的保留,作者通过低压CO2,N2,Xe和H2O吸附等温线证实了这一点。即使在储存15个月后,PLs的孔隙率也可以得到很大程度的保留。
自2004年轰动世界的胶带剥离石墨烯被发现后,二维材料以其的结构逐渐进入大众视野,大批二维材料应运而生:黑磷,有机金属材料,过渡金属硫化物等等。而随着二维材料家族的逐渐壮大,有机共价材料(Covalent Organic Frameworks, COFs)以其简单的制备方法,优异的性能和的共价结构脱颖而出,引起不少学者的关注,COFs材料究竟是什么?它的亮点在哪里?
共价有机框架(或骨架)(Covalent-OrganicFrameworks, COFs)是以轻元素C、O、N、B等以共价键连接而构建,经热力学控制的可逆聚合形成的有序多孔结构的晶态材料。如果聚合是动力学控制的话,形成的产物就是无序多孔材料。COFs和它们的姐妹材料(金属有机框架,MOFs)类似,其主要特征是内部存在均匀分布的特定大小的孔结构,这些孔赋予了共价有机框架一些的性质,使得它们在气体存储与分离、催化以及光电材料等方面都具有重要应用。
(作者: 来源:)