焊接时通常采用聚焦方式会聚激光,一般选用63~254mm(2.5”~10”)焦距的透镜。聚焦光斑大小与焦距成正比,焦距越短,光斑越小。材料的汽化热一般很大,所以激光汽化切割时需要大的功率和功率密度。但焦距长短也影响焦深,即焦深随着焦距同步增加,所以短焦距可提高功率密度,但因焦深小,必须保持透镜与工件的间距,且熔深也不大。由于受焊接过程中产生的飞溅物和激光模式的影响,实际焊接使用的焦深多为焦距1
激光雕刻切割机
焊接时通常采用聚焦方式会聚激光,一般选用63~254mm(2.5”~10”)焦距的透镜。聚焦光斑大小与焦距成正比,焦距越短,光斑越小。材料的汽化热一般很大,所以激光汽化切割时需要大的功率和功率密度。但焦距长短也影响焦深,即焦深随着焦距同步增加,所以短焦距可提高功率密度,但因焦深小,必须保持透镜与工件的间距,且熔深也不大。由于受焊接过程中产生的飞溅物和激光模式的影响,实际焊接使用的焦深多为焦距126mm(5”)。当接缝较大或需要通过加大光斑尺寸来增加焊缝时,可选择254mm(10”)焦距的透镜,在此情况下,为了达到深熔小孔效应,需要更高的激光输出功率(功率密度)。
当激光功率超过2kW时,特别是对于10.6μm的CO2激光束,由于采用特殊光学材料构成光学系统,为了避免聚焦透镜遭光学破坏的危险,经常选用反射聚焦方法,一般采用抛光铜镜作反射镜。由于能有效冷却,它常被推荐用于高功率激光束聚焦
对不同的材料进行激光焊接时,激光束位置控制着焊缝的终质量,特别是对接接头的情况比搭接结头的情况对此更为敏感。激光切割作为一种精密的加工方法,几乎可以切割所有的材料,包括薄金属板的二维切割或三维切割。例如,当淬火钢齿轮焊接到低碳钢鼓轮,正确控制激光束位置将有利于产生主要有低碳组分组成的焊缝,这种焊缝具有较好的抗裂性。有些应用场合,被焊接工件的几何形状需要激光束偏转一个角度,当光束轴线与接头平面间偏转角度在100度以内时,工件对激光能量的吸收不会受到影响

通用熔覆设备
1.采用线性模组,运动精度高,动态性能稳定,结构紧凑,可维护性好;
2.线性运动轴和激光头在机床上方,负荷没有变化,同时避免粉尘干扰;
3.工作台上空间较大,可以放置待修复的大型零件,也可以更换大型转台或变位机;
4.运动控制、激光器、送粉器等均采用集中程序控制,集成度高;
5.采用基于PC的数控系统,用户界面比传统机床面板更友好;
6.主要设备间通讯采用现场总线,集成度高,故障概率低;
7.根据应用区别,可搭配视觉定位、感应预热等辅助设备
(作者: 来源:)