隧道射流风机设计参数 普通轴流风机的性能由压力-流量表示,而隧道射流风机的性能是由推力-流量关系表示。虽然轴流风机设计理论对隧道射流风机依然适用,但是,轴流风机的设计是依靠全压、流量来决定设计工作点的。 隧道风机厂家对由射流风机的推力等参数确定风机全压、流量的步骤作了正确的陈述,而对风机动压计算的提法不对,对静压的计算方法也不明确。因此,本文以我们设计的射流风机作为实例,再次列出详细的计算步骤和依据,作为补充。 设计实例:已知标态下,隧道射流风机的推力 F=590N,设计转速 n=1470rpm,叶轮直径 D=0.9m。设计隧道射流风机的步骤如下。 (1)由叶轮直径D计算出面积 A=0.63585m2;假设式(1)中 K=0.88,由推力可以计算出流量 Q=18.8m3/s。 (2)由流量Q和叶轮直径D得到出口速度 V=29.6m/s,由此计算出风机动压 Pd=12 ρV2 =525.7Pa;注意,风机动压是由出口平均速度V得到,而不是如文中所说的叶轮出口速度Cz。 (3)风机的静压Pst是用来克服消声器的阻力、风机进出口阻力,以及风机叶轮前后,由于轮毂的存在,气流收敛和扩压的损失,这些损失可以由消声器产品规格和轮毂比的大小确定。对于没有整流罩和整流体的隧道射流风机,轮毂比要尽量小,以减小高速气流速度突然变化的损失。在做隧道射流风机模化设计时,应尽量采用增大叶轮直径D减小转速n的办法,增加流量和推力,尽力避免推力-效率比λ的减小。 本算例中,轮毂比取0.45,则风机叶轮出口速度 Cz=37.1m/s,设整流体和整流罩的效率为0.75,则压力损失为 75Pa;消声器的阻力取为50Pa;所以,管网总阻力损失为125Pa。 (4)由步骤(2)、步骤(3)计算的动压和静压,计算出风机全压 P=Pd+ Pst=650 Pa。 (5)由流量Q、全压P和叶轮直径D、转速n,按普通轴流风机设计方法设计隧道射流风机。本文设计的风机全压效率为76%,所以,风机所需功率 N=16.1kW,推力-功率比为36.7。 (6)如果要作模型机试验,可以按照下节内容设计模型机的参数。 轴流风机设计中,在较大的范围内,轴向速度的变化对风机效率的影响不大。由推力-功率的关系中,我们知道,隧道射流风机的出口平均速度越小,隧道射流风机的推力-功率比λ越大,射流风机的性能越好。但是,由于受到隧道换风量的要求和隧道面积的限制,以及隧道内通风时气体具有一定的流速,所以其出口速度不能太小,目前常见的射流风机的出口速度在30~40m/s,从我们对某厂的射流风机产品的推力-功率比λ的计算,也证实了我们的讨论。等到隧道风机正常运行8小时后停机,采用电阻法对通风机电机的绕组温度进行测试。其产品直径从6.3号增大到12.5号,λ从大约28增加到38。 在做隧道射流风机模化设计时,应尽量采用增大叶轮直径D减小转速n的办法,增加流量和推力,尽力避免推力-效率比λ的减小。因此,在条件许可的情况下,隧道射流风机应采用大机号低转速的设计方法。 淄博科尔福风机有限公司位于山东省淄博市周村南郊镇。主营隧道风机、不锈钢风机、防腐风机,东倚博莱高速,西临济青高速,难靠309国道,北傍胶济铁路,交通方便,通讯发达。公司系原机械工业部风机生产厂,原冶金工业部矿山节能推广站矿用节能风机主体生产厂。射流风机的运行控制一般是根据CO浓度来决定开一台或一组,选择高速档或低速档。欢迎前来咨询!
SDS系列射流风机广泛用于公路、铁路隧道的运营通风系统中,一般在隧道中每隔一段距离,在顶部或两侧悬挂几台风机,当风机工作时,流经隧道的总空气流量的一部分被风机吸入,经叶轮做功产生较高推力后,由风机出口高速喷出,如此高速气流将把能量传给隧道内的空气推动隧道内的空气一起向前流动,当经过一段距离,风速降至一定值时,下一组风机则继续工作,这样就实现了从隧道进口端吸入新鲜空气,从出口端排出污染空气的通风目的。控制屏(箱)开闭灵活、箱内接线整齐、回路编号正确、预埋管与箱体连接处应有锁紧螺母。 淄博科尔福风机有限公司位于山东省淄博市周村南郊镇。主营隧道风机、不锈钢风机、防腐