微纳米气泡的特性 自身增压溶解
水中的气泡四周存有气液界面,而气液界面的存在使得气泡会受到水的表面张力的作用。对于具有球形界面的气泡,表面张力能压缩气泡内的气体,从而使更多的气泡内的气体溶解到水中。
根据杨-拉普拉斯方程, P=2σ/r,P代表压力上升的数值,σ代表表面张力,r代表气泡半径。直径在0.1mm以上的气泡所受压力很小可以忽略,而直径10μm
农业种植灌溉微纳米气泡制氧机销售

微纳米气泡的特性 自身增压溶解
水中的气泡四周存有气液界面,而气液界面的存在使得气泡会受到水的表面张力的作用。对于具有球形界面的气泡,表面张力能压缩气泡内的气体,从而使更多的气泡内的气体溶解到水中。
根据杨-拉普拉斯方程, P=2σ/r,P代表压力上升的数值,σ代表表面张力,r代表气泡半径。直径在0.1mm以上的气泡所受压力很小可以忽略,而直径10μm的微小气泡 会受到0.3个大气压的压力,而直径1μm的气泡会受高达3个大气压的压力。微纳米气泡在水中的溶解是一个气泡逐渐缩小的过程,压力的上升会增加气体的溶解速度,伴随着比表面积的增加,气泡缩小的速度会变的越来越快,从而终溶解到水中,理论上气泡即将消失时的所受压力为无限大。
微纳米气泡曝气技术是指将微纳米气泡发生技术应用于水处理中曝气,是近年来发展的一种高效环保水处理技术。相较于普通大气泡,微纳米气泡具有的物理化学特性,如比表面积大、表面带电荷、水体中存在时间长、气液传质率高、界面点位高、能自发产生自由基等。在水处理中常应用于悬浮物的吸附去除、难降解有机污染物的氧化分解、向水体复氧促进生物活性以及减少底泥内源污染等方面。
通常把直径在0.1~50μm的微小气泡称为微纳米气泡,其具有与普通气泡不同的特性,这一点已引起人们的注意。早在1970年,Bowonder等就已经研究了多孔盘制造气泡的技术;1979年,Takahashi等开展了对压力溶气析出气泡技术的研究;1991年Ketkar等开展了对电解析出气泡技术的研究,使得微纳米气泡的发生方法得到了丰富和发展,如剪切法、加压溶解法、电解法等。
目前,微纳米气泡已经得到了广泛的关注和研究,由于微纳米气泡发生装置在形成气泡的浓度、尺寸均匀性以及装置能耗等方面与传统气泡发生装置相比都有较大的优势,因而在化工、环境和医学等方面具有良好的应用前景。
(作者: 来源:)