德国斯派克SPECTROSCOUT 便携式能量色散X射线荧光分析仪 ,堪称移动实验室 !便与携带及运输,一体化计算机及触屏,易于使用,可外接计算机系统,现场检测,实验室级的分析数据坚固 适用于贵金属检测、环境样品分析、废油测定及地质勘探等应用。对于偏远地区的环境和地质样品也能得到实验室级别的元素分析水平。
SPECTROSCOUT重12公斤,仅用一个肩带即可携带,但是SPECTR
废油便携式光谱仪
德国斯派克SPECTROSCOUT 便携式能量色散X射线荧光分析仪 ,堪称移动实验室 !便与携带及运输,一体化计算机及触屏,易于使用,可外接计算机系统,现场检测,实验室级的分析数据坚固 适用于贵金属检测、环境样品分析、废油测定及地质勘探等应用。对于偏远地区的环境和地质样品也能得到实验室级别的元素分析水平。
SPECTROSCOUT重12公斤,仅用一个肩带即可携带,但是SPECTROSCOUT能够达到该领域内实验室台式分析仪所能达到的那么多的分析能力。
SPECTROSCOUT虽然是一个小仪器,但是对于终用户确是重要一步。在该领域,它的精度和速度使得用户能够更快决策。现在,许多的实验室测量成为不必要的.
5、不锈钢中加钛或铌是为了防止晶间腐蚀。
6、钼和铜可以提高某些不锈钢的耐腐蚀性能。
7、其他元素对不锈钢的性能和组织的影响
以上主要的九种元素对不锈钢的性能和组织的影响,除这些元素对不锈钢性能与组织影响较大的元素以外,不锈钢中还含有一些其他的元素。有的是和一般钢一样为常存杂质元素,如硅、硫、磷等。也有的是为了某些特定的目的而加入的,如钴、硼、硒、稀土元素等。从不锈钢的耐腐蚀性能这一主要性质来说,这些元素相对于已讨论的九种元素,都是非主要方面的,虽然如此,但也不能完全忽略,因为它们对不锈钢的性能与组织同样也发生影响。
硅是形成铁素体的元素,在一般不锈钢中为常存杂质元素。
钴作为合金元素在钢中应用不多,这是因为钴的价格高及其在其它方面(如高速钢、硬质合金、钴基耐热合金、磁钢或硬磁合金等)有着更重要的用途。在一般不锈钢中加钴作合金元素的也不多,常用不锈钢如9Crl7MoVCo钢(含1.2-1.8%钴)加钴,目的并不在于提高耐腐蚀性能而在于提高硬度,因为这种不锈钢的主要用途是制造切片机械刃具、剪刀及手术刀片等。
硼高铬铁素体不锈钢Crl7Mo2Ti钢中加0.005%硼,可使在沸腾的65%醋酸中的耐腐蚀性能提高。加微量的硼(0.0006~0.0007%)可使奥氏体不锈钢的热态塑性改善。少量的硼由于形成低熔点共晶体,使奥氏体钢焊接时产生热裂纹的倾向增大,但含有较多的硼(0.5~0.6%)时,反而可防止热裂纹的产生。因为当含有0.5~0.6%的硼时,形成奥氏体-硼化物两相组织,使焊缝的熔点降低。熔池的凝固温度半溶化区时,母材在冷却时产生的张应力,由处于液态。固态的焊缝金属承受,此时是不致引起裂缝的,即使在近缝区形成了裂纹,也可以为处于液态-固态的熔池金属所填充。含硼的铬镍奥氏体不锈钢在原子能工业中有着特殊的用途。
磷在一般不锈钢中都是杂质元素,但其在奥氏体不锈钢中的危害性不像在一般钢中那样显著,故含量可允许高一些,如有的资料提出可达0.06%,以利于冶炼控制。个别的含锰的奥氏体钢的含磷量可达0.06%(如2Crl3NiMn9钢)以至0.08%(如Cr14Mnl4Ni钢)。利用磷对钢的强化作用,也有加磷作为时效硬化不锈钢的合金元素,PH17-10P钢(含0.25%磷)乃PH-HNM钢(含0.30磷)等。
硫和硒在一般不锈钢中也是常有杂质元素。但向不锈钢中加0.2~0.4%的硫,可提高不锈钢的切削性能,硒也具有同样的作用。硫和硒提高不锈钢的切削性能,是因为它们降低不锈钢的韧性,例如一般18-8铬镍不锈钢的冲击值可达30公斤/厘米2。含0.31%硫的18-8钢(0.084%C、18.15%Cr、9.25%Ni)的冲击值为1.8公斤/平方厘米;含0。22%硒的18-8钢(0.094%C、18.4%Cr、9%Ni)的冲击值为3.24公斤/平方厘米。硫与硒均降低不锈钢的耐腐蚀性能,所以实际应用它们作为不锈钢的合金化元素的很少。
稀土元素稀土元素应用于不锈钢,目前主要在于改善工艺性能方面。如向Crl7Ti钢和Cr17Mo2Ti钢中加少量的稀土元素,可以消除钢锭中因氢气引起的气泡和减少钢坯中的裂纹。奥氏体和奥氏体-铁素体不锈钢中加0.02~0.5%的稀土元素(镧合金),可显著改善锻造性能。曾有一种含19.5%铬、23%镍以及钼铜锰的奥氏体钢,由于热加工工艺性能在过去只能生产铸件,加稀土元素后则可轧制成各种型材。
欧盟ROHS指令自实施开始,迄今已近十年。这十年也正是电子市场蓬勃发展的黄金时期,可以说欧盟ROHS指令一路伴随了电子制造业的发展
一、RoHS 2.0介绍
欧盟议会及欧盟会于2003年2月13日在其《公报》上发布了《废旧电子电气设备指令》(简称《WEEE指令》)和《电子电气设备中限制使用某些有害物质指令》(简称《RoHS指令》)。RoHS是由欧盟立法制定的一项强制性标准,该标准已于2006年7月1日开始正式实施,主要用于规范电子电气产品的材料及工艺标准,使之更加有利于人体健康及环境保护。该标准的目的在于消除电子电气产品中的铅、镉、六价铬、多联苯和多二苯醚共6项物质。
2011年7月1日,欧盟议会和理事会在欧盟公报上发布指令 2011/65/EU(ROHS 2.0)以取代2002/95/EC, 新指令将于20天后(即2011年7月21日)生效。 申请日期: 2013年1月3日起旧指令2002/95/EC将会被废除,欧盟成员国必须于2013年1月2日前将指令2011/65/EU更新到当地法律。
RoHS 2.0 重要变化:纳入CE标志要求,成为欧盟CE标志指令之一。上述电子电气产品必须同时符合低电压指令(LVD)、电磁兼容(EMC)、能源相关产品(ErP)和RoHS 2.0的指令要求,才能粘贴CE标志。为了符合新指令RoHS2.0的要求,产品不但需要满足其中规定的限制使用的物质的要求,还要求产品制造商出具符合性声明,以及组织相关技术文档,并保存十年。

三、生产商材料选择及应对方案
1、 生产商应对RoHS 2.0路线图
Step 1,确定本厂材料种类,评估高风险材料,可参考表2电子电器产品常用零部件及材料中限用物质存在风险等级。
Step 2,工厂内部XRF筛查,制定抽样筛查程序,特别是高风险材料。
Step 3,筛选不合格样品或高风险样品定期委外化学测试,或要求供应商提供外测化学分析报告。
Step 4,保留该材料技术文件,包括大不限于检测报告、内部筛查报告、供应商评价记录、材料MSDS等。
Step 5,着手开展四项新增管控物质DIBP、DBP、BBP、DEHP的供应商材料调查和高风险材料管控措施。
2、产品RoHS 符合性生产管控流程图
四、信测实验室检测应对方案
1、单项均质材料检测
2、整机检测
3、电子电气产品材料邻苯二甲酸酯检测分类模式
斯派克的手持式光谱仪和X射线荧光光谱仪专针对RoHS检测方案!
(作者: 来源:)