电磁屏蔽
当电磁波到达屏蔽体表面时,由于空气与金属的交界面上阻抗的不连续,对入射波产生的反射。这种反射不要求屏蔽材料必须有一定的厚度,只要求交界面上的不连续;b、未被表面反射掉而进入屏蔽体的能量,在体内向前传播的过程中,被屏蔽材料所衰减。也就是所谓的吸收;c、在屏蔽体内尚未衰减掉的剩余能量,传到材料的另一表面时,遇到金属-空气阻抗不连续的交界面,会形成再次反射,并重新返回
导电橡胶屏蔽效能技术

电磁屏蔽
当电磁波到达屏蔽体表面时,由于空气与金属的交界面上阻抗的不连续,对入射波产生的反射。这种反射不要求屏蔽材料必须有一定的厚度,只要求交界面上的不连续;b、未被表面反射掉而进入屏蔽体的能量,在体内向前传播的过程中,被屏蔽材料所衰减。也就是所谓的吸收;c、在屏蔽体内尚未衰减掉的剩余能量,传到材料的另一表面时,遇到金属-空气阻抗不连续的交界面,会形成再次反射,并重新返回屏蔽体内。这种反射在两个金属的交界面上可能有多次的反射。总之,电磁屏蔽体对电磁的衰减主要是基于电磁波的反射和电磁波的吸收。
被动屏蔽和主动屏蔽
根据干扰源相对于屏蔽体的位置(在屏蔽体的内部或外部).可分为主动屏蔽与被动屏蔽。若屏蔽体用来防止干扰场进入被屏蔽空间,这种屏蔽结构称为被动屏蔽。若干扰源在屏蔽体内部,屏蔽体用来防止干扰场泄露到外部空间,则称这种屏蔽结构为主动屏蔽。主动屏蔽不适用于高频,而专门用于低频。被动屏蔽体多用于屏蔽对象与干扰源相距较远的场合,如屏蔽室等。
工程中,实际的辐射的干扰源大致分为两类:类似于对称振子天线的非闭合载流导线辐射源和类似于变压器绕组的闭合载流导线辐射源。由于电偶极子和磁偶极子是上述两类源的基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成(图2)。因此通过对电偶极子和磁偶极子所产生的场进行分析,就可得出实际辐射源的远近场及波阻抗和远、近场的场特性,从而为屏蔽分类提供良好的理论依据。
(作者: 来源:)