水泥与减水剂相容性的现象特征
水泥与减水剂相容性良好,应包括以下现象特征:
饱和掺量点明确;饱和掺量不高,初始流动度较大;经时流动度损失较小;一定减水剂掺量时净浆没有明显泌水。上述任何一个方面存在问题,均视为水泥与减水剂相容性不好。某种与减水剂相容性不好的水泥,可能存在其中一个问题,也可能同时存在多个问题。问题不同,给混凝土带来的影响不同,在水泥厂的质量控制方法、纠正措
水泥减水剂价格

水泥与减水剂相容性的现象特征
水泥与
减水剂相容性良好,应包括以下现象特征:
饱和掺量点明确;饱和掺量不高,初始流动度较大;经时流动度损失较小;一定减水剂掺量时净浆没有明显泌水。上述任何一个方面存在问题,均视为水泥与减水剂相容性不好。某种与减水剂相容性不好的水泥,可能存在其中一个问题,也可能同时存在多个问题。问题不同,给混凝土带来的影响不同,在水泥厂的质量控制方法、纠正措施也不同。减水剂的饱和掺量是随减水剂掺量增加、净浆初始流动度不再明显增加的掺量,也可以是经时流动度损失不再明显减小的掺量。《水泥与减水剂相容性试验方法》只规定了个饱和掺量,但在很多实际应用场合,后一种饱和掺量同样重要。一般情况下,两者存在明显的差异,后者则大于前者。
高效减水剂的作用机理
高效
减水剂的极性亲水基团定向吸附于水泥
颗粒表面,又以氢键形式与水分子缔合,再加 上水分子之间的氢键缔合,构成了水泥微粒表 面的一层稳定的水膜,阻止水泥颗粒间的直接 接触,增加了水泥颗粒间的滑动能力,起到润 滑作用,从而进一步提高浆体的流动性。
减水剂的作用过程 当没有减水剂时,水泥加水后,不能获得均匀分散体系,由于下列原因而产生絮凝结构,使得部分拌 合水包含其中,不能贡献给水泥浆的流动性: 水具有高表面张力(氢键分子结构) 加减水剂前的 絮凝结构水泥颗粒边、角和表面正负电荷间的相互吸力当减水剂加入到水泥浆中,吸附在水泥颗粒表面,电荷,引起水泥颗粒相互排斥,打破了絮凝结构, 释放其包含的水,改善分散性——静电排斥作用; 由于减水剂碳氢分子链上的极性基吸附水,形成吸 附层包裹在水泥颗粒表面,产生空间位阻效应,阻 加入减水剂后,絮凝 碍水泥颗粒的紧密接触,阻止絮凝结构的形成。 结构被打破离子基团朝向水,使水泥颗粒表面带有几毫伏的负 减水剂分子在水泥颗粒表面的吸附。
混凝土用
减水剂不是可以增大流动性吗?为什么说除水之外没有原材料为混凝土提供流动性?这里边其实是有误区的。
我们说混凝土的可塑性是由水提供的,并未否定减水剂可以增加可塑性。在混凝土中加入适量的减水剂,毫无疑问,混凝土的流动性增加了。但是,如果我们不加入减水剂,而加入适量的水呢?流动性增加,即可塑性增加。但如果混凝土中没有水,即使加再多的减水剂,无论如何拌合,混凝土原材料表面不可能会被润湿,因而颗粒间的的摩擦仍然会很高,混凝土是一盘散沙,完全不具备可塑性。在此基础上可以认为,本质上,足量的水可以润湿混凝土原材料表面,减少颗粒之间的摩擦,从而为混凝土提供塑性性能;减水剂加入后,可以放大水的这种作用,在这个意义上来说,加减水剂相当于加水。
(作者: 来源:)