淬透性还包括冷却条件和合金元素之间的关系,以及应用于钢种设计及替代、设计选材、热处理工艺参数控制等。换言之,淬透性对于齿轮的设计和制造工艺都具有十分重要的意义。实验数据表明同样深度的渗碳层,由于原材料、模数、外形尺寸、冷却条件不同而得到的有效硬化层深差异非常大,即使是外形尺寸、模数和冷却条件非常类似或相同,工件有效硬化层深可相差0.3mm~0.5mm之多,究其原因就是渗碳层淬透
小模数齿轮小模数齿轮供应
淬透性还包括冷却条件和合金元素之间的关系,以及应用于钢种设计及替代、设计选材、热处理工艺参数控制等。换言之,淬透性对于齿轮的设计和制造工艺都具有十分重要的意义。实验数据表明同样深度的渗碳层,由于原材料、模数、外形尺寸、冷却条件不同而得到的有效硬化层深差异非常大,即使是外形尺寸、模数和冷却条件非常类似或相同,工件有效硬化层深可相差0.3mm~0.5mm之多,究其原因就是渗碳层淬透性差异所致。
齿轮剥落失效的产生不仅与齿面下的剪应力分布有关,还与有效硬化层深、硬度梯度等因素有关。齿轮的有效硬化层深对于过渡区常常难以涵盖,而各类硬齿面齿轮的剥落往往都与过渡区有关,实践表明有效硬化层深剥落的zui大特点就是疲劳裂纹在硬化层与心部的过渡区产生,形成的剥落坑较深且面积大。通常情况下增加有效硬化层深有利于提高齿轮承载能力,防止疲劳剥落失效。然而过大的硬化层深会使工艺难度加大、工艺周期增长、畸变增加等诸多问题,造成齿轮生产成本和能源消耗增加。合理的有效硬化层深设计是既要保证过渡区有足够的强度防止深层剥落,又不过度设计。

装配不同心时会导致轴系运转不平衡,精度较高的齿轮如果出现不平衡现象那么对齿轮运转的精度有很大的影响。对于减速机的有效性也会造成破坏。
齿面硬度也是影响减速机齿轮运转有效性的重要因素,齿面硬度低会使得减速机的齿轮运转失效。
齿轮断齿造成的失效是整个机械工程中zui为严重的情况,主要包括过载折断、疲劳折断随机折断等,对于过载折断来说,是指齿轮受到一次或者多次严重过载时发生的断齿,这种情况下,齿轮的断口一般位于齿轮根部,断口一般很平直且粗糙。

(作者: 来源:)