焊接缺陷,产生原因、危害、预防措施都在这了
焊接气孔缺陷产生原因、危害、预防措施:
(1)气孔的分类,气孔从其形状上分,有球状气孔、条虫状气孔;从数量上可分为单个气孔和群状气孔。群状气孔又有均匀分布气孔,密集状气孔和链状分布气孔之分。按气孔内气体成分分类,有氢气孔、氮气孔、二氧化碳气孔、氧气孔等。熔焊气孔多为氢气孔。
(2)气孔的形成机理,常温固态金属中气体的溶解度只
超声波焊接设备
焊接缺陷,产生原因、危害、预防措施都在这了
焊接气孔缺陷产生原因、危害、预防措施:
(1)气孔的分类,气孔从其形状上分,有球状气孔、条虫状气孔;从数量上可分为单个气孔和群状气孔。群状气孔又有均匀分布气孔,密集状气孔和链状分布气孔之分。按气孔内气体成分分类,有氢气孔、氮气孔、二氧化碳气孔、氧气孔等。熔焊气孔多为氢气孔。
(2)气孔的形成机理,常温固态金属中气体的溶解度只有高温液态金属中气体溶解度的几十分之一至几百分之一,熔池金属在凝固过程中,有大量的气体要从金属中逸出来。当凝固速度大于气体逸出速度时,就形成气孔。
(3)产生气孔的主要原因,母材或填充金属表面有锈、油污等,焊条及焊剂未烘干会增加气孔量,因为锈、油污及焊条药皮、焊剂中的水分在高温下分解为气体,增加了高温金属中气体的含量。焊接线能量过小,熔池冷却速度大,不利于气体逸出。焊缝金属脱氧不足也会增加氧气孔。
(4)气孔的危害,气孔减少了焊缝的有效截面积,使焊缝疏松,从而降低了接头的强度,降低塑性,还会引起泄漏。气孔也是引起应力集中的因素。氢气孔还可能促成冷裂纹。
(5)防止气孔的措施
a.清除焊丝,工作坡口及其附近表面的油污、铁锈、水分和杂物。
b.采用碱性焊条、焊剂,并烘干。
c.采用直流反接并用短电弧施焊。
d.焊前预热,减缓冷却速度。
e.用偏强的规范施焊。
减小焊接残余变形的工艺措施
1.反变形法
焊接前装配时根据经验预估变形的大小,给构件一个与焊接变形方向相反的变形,以此与焊接变形相抵消,使结构在焊接后能达到技术要求。反变形有两种方法:①塑性反变形;②弹性反变形。在实际生产中,弹性反变形比塑性反变形更可靠些。因为即使弹性反变形的预应变量不够准确,也总是可以减小角变形。若采用塑性反变形,所选取的塑性预弯量必须非常精准,否则得不到良好的效果。
2.在外拘束条件下焊接
将焊件刚性固定在夹具中,以限制构件在焊接过程中产生变形。对减小焊件的角变形有很好的效果,可使焊接变形减少,但焊接应力较高。
3.合理选择焊接方法和焊接规范
为减小焊接变形,应尽可能采用高能量密度的焊接方法。如电子束焊、激光焊接、窄间隙焊接等。它们有较低的焊接线能量,焊接变形小。在一般生产中,CO2气体保护焊来取代手工电弧焊,不但,而且还能明显地减小焊接变形。焊接薄板时,可采用钨极脉冲弧焊或电阻焊,缝焊,都可防止压曲变形。
如果在生产中没有条件采用低线能量的方法,又不降低焊接规范时,可采用直接水冷或采用水冷铜块来改变热场分布,以达到减小变形的目的。但是对于淬硬性高的金属材料,此方法慎用。
激光焊接的缺点
① 激光器及焊接系统各配件的价格较为昂贵,因此初期投资及维护成本比传统焊接工艺高,经济效益较差。
② 由于固体材料对激光的吸收率较低,特别是在出现等离子体后(等离子体对激光具有吸收作用),因此激光焊接的转化效率普遍较低(通常为5%~30%)。
③ 由于激光焊接的聚焦光斑较小,对工件接头的装备精度要求较高,很小的装备偏差就会产生较大的加工误差。
(作者: 来源:)