从光学应用的角度来讲,单晶YSZ因其折射率高、色散大、物化性能稳定,常被用作高温光学元件,以及在光学设备中作为激光基质晶体。氧化锆(YSZ)晶体技术参数。 晶体结构:立方;晶格常数:a = 5.125 ;密度:5.8 g / cm3;纯度: 99.99%;熔点: 2800°c;热膨胀系数:10.3 x10-6/ °c;介电常数:27;晶体生长方法:弧熔法。
氧化锆(YSZ)晶体基片
从光学应用的角度来讲,单晶YSZ因其折射率高、色散大、物化性能稳定,常被用作高温光学元件,以及在光学设备中作为激光基质晶体。氧化锆(YSZ)晶体技术参数。 晶体结构:立方;晶格常数:a = 5.125 ;密度:5.8 g / cm3;纯度: 99.99%;熔点: 2800°c;热膨胀系数:10.3 x10-6/ °c;介电常数:27;晶体生长方法:弧熔法。
氧化锆(YSZ)单晶是目前发现的抗辐照能力zui强的绝缘体材料,在轻水堆中可用作“燃烧”多余钚的惰性基材以及储存核废物的基体而倍受关注。
氧化锆(YSZ)晶体技术参数。 晶体结构:立方;晶格常数:a = 5.125 ;密度:5.8 g / cm3;纯度: 99.99%;熔点: 2800°c;热膨胀系数:10.3 x10-6/ °c;介电常数:27;晶体生长方法:弧熔法。
常温下, 氧化锆只能是单斜相,当用锆盐煅烧,达到650℃时,出现稳定的四方相,继续升高时四方相逐步转变为单斜相,再继续升温至830℃时, 氧化锆又开始向四方相转变,至1170℃时,完全转变为四方相,温度升至2370℃时转变为立方相。氧化锆(YSZ)单晶陶瓷的强度与韧性都是以它的晶体结构为基础的,因其特殊的晶体结构才可以制成适用于各种恶劣环境的陶瓷零件。
氧化锆存在三种稳定度同素异晶体:单斜相,立方相和四方相。低温时为单斜晶系,在1100℃以上形成四方晶型,在1900℃以上形成立方晶型。氧化锆(YSZ)晶体是目前发现的抗辐照能力非常强的绝缘体材料,在轻水堆中可用作“燃烧”多余钚的惰性基材以及储存核废物的基体而倍受关注。从光学应用的角度来讲,单晶YSZ因其折射率高、色散大、物化性能稳定,常被用作高温光学元件,以及在光学设备中作为激光基质晶体。
(作者: 来源:)