相对改进型的封头而言,由于添加了打孔的挡板,造成入口段的阻力损失很大,使得整个换热器部分的压差损失增加显著。实验中分别测量了不同封头不同Re数时换热器进出口总管的压降,以此计算出反映阻力特性的摩擦参数图5为按照式(1)计算出来的摩擦因子,与Re的关系图,从中可以看出3种封头下变化规律相同,摩擦因子/随着 e的增大而降低。孔板型封头结构的摩擦因子,要比原始封头A大很多,特别是低R
铝合金封头定做
相对改进型的封头而言,由于添加了打孔的挡板,造成入口段的阻力损失很大,使得整个换热器部分的压差损失增加显著。实验中分别测量了不同封头不同Re数时换热器进出口总管的压降,以此计算出反映阻力特性的摩擦参数图5为按照式(1)计算出来的摩擦因子,与Re的关系图,从中可以看出3种封头下变化规律相同,摩擦因子/随着 e的增大而降低。孔板型封头结构的摩擦因子,要比原始封头A大很多,特别是低Re下,这是由于在入口段添加了孔板的缘故,增加了其流动阻力,这表明强化了换热器换热的同时增大了流动阻力,符合传热学的基本知识。R凹过小时使材料流动性降低,使封头表面质量降低甚至产生龟裂形成裂纹源,导致封头被拉裂,还会降低模具的使用寿命,因此R凹的大小要适当。随着 e的增加,封头B和C的摩擦系数迅速下降,从图5中可以看出,封头B的摩擦系数始终大于A和c,这说明虽然顺排孔板封头能有效地改善其物流分配的均匀性,但是其阻力损失却相当大,使其不可逆损失相应增大,进而导致换热器换热效能的下降。而错排孔板型封头c不仅改善物流分配的效果佳,其阻力损失不大,特别是在.Re较大时,基本与封头A接近,如在Re:500时封头A与C相差达到94.2%,而在Re:3000时,其值只差15.7% ,这说明了在 e较大的情况下,封头c不仅有效地改善了换热器的物流分配的均匀性,而且有效地削弱了由于强化换热而造成的阻力损失,说明其结构更为合理。
四达封头浅析:封头冲压中的技术
封头带飞边时直径) , 相对厚度越大, 坯料边缘稳定性 越好, 切向压应力只能使板边变厚;相对厚度越小,
对板边纵向弯曲抗力越小, 易丧失稳定而起皱。此 外,热冲时板坯料加热温度不均、 模具间隙及下模圆
角太大、 坯料划、 碰伤严重、 压边力太小或不均等都 能产生皱折和鼓包。坯料产生皱折后,很难通过阴、 阳模具间的间隙, 容易被拉断。 即使通过阴、 阳模,皱
折也无法消除,会影响封头质量。 高碳钢和普通低碳钢椭球体封头不起皱折条件 为:
Dp - Dm < ( 1 ~20) t ( 6)
Dp——坯料直径,
Dm——拉深后大口直径,
t——封头壁厚。
对某直径1000 容器封头,初期冲压过程中皱 折和鼓包现象严重, 按公式( 6) 计算 Dp - Dm=1 400- ( 1 000+ 50+ 76×2) = 198> 20t 容易产生 皱折和鼓包, 所以对模具进行了完善,采用增加压边圈的方法解决,设计了带压边圈的模具如图3 所示,
冲压时利用压力机边缸给压边圈一定压力, 冲前使 用适量的润滑油等措施,减少并终避免了鼓包和皱折现象的发生。其中的关键是平衡波纹管的有效面积必须是工作波纹管有效面积的两倍,这样工作波纹管内压引起的向外侧的轴向推力通过平衡拉杆被平衡波纹管因内压引起的相反方向的推力所抵消,而无轴向推力输出,管道或设备不再受力在正常的补偿过程中,它自身的力平衡关系不变。为了校正椭球封头体型面增加了底拖 用于校形工序,使椭球体型面良好过渡;设计了阴模 直口与阴模拖直口,装配时用压板螺栓定位,从而保 证了阴模与阴模拖的同轴度。
凹模圆角半径R凹 的确定 一般来说, R凹 尽可能取大些,大的R凹 可以降低 极限拉深系数,减少冲压时摩擦阻力、 提高材料的流动性, 从而提高椭球体表面质量,但是R凹 过大时会削弱压边圈的作用, 引起起皱和鼓包现象; R凹 过小 时使材料流动性降低,使封头表面质量降低甚至产 生龟裂形成裂纹源, 导致封头被拉裂,还会降低模具的使用寿命,因此R凹 的大小要适当。这种竞争使质量难以保证,既损害了用户,又牺牲了生产厂和同行的利益,扰乱了市场秩序。
椭球体凹模圆 角半径可以参考公式:
R 凹 = C1C2t ( 7)
C1——考虑材料的力学性能系数,对于软钢、 硬 铝C1= 1; 对于纯铜、 黄铜、 防锈铝, C1=
0. 8;对于406 高强度钢取C1= 1. 2~1. 5
C2——考虑板料厚度与拉深系数,取5~6. 5
R 凹 = 1. 2 ×5 ×4 = 24mm
考虑406 钢冲压性能及工件使用性能取R凹 =
25mm,经过实际使用该圆角半径可行。
(作者: 来源:)